PRODUCTION of MUSHROOM MYCELIUM 243 for the Submerged Propagation of Stag(I

Total Page:16

File Type:pdf, Size:1020Kb

PRODUCTION of MUSHROOM MYCELIUM 243 for the Submerged Propagation of Stag(I Production of Mushroom The technique ofl'ers the possibility of greatly cutting the cost of a mushroom- flavored food material, although the physical form and texture usually as- Mycelium sociated wdth mushrooms must be sacrificed. Harry H urn ¡eld The principles of the method are based on the fact that when a liquid that contains the required chemicals and food supply is continuously stirred vigorously at the right temperature and Growing mushrooms has become an mixed thoroughly with a constant sup- important industry in the United ply of air, many micro-organisms re- States. Of the estimated annual pro- producía in it with great rapidity. The duction of 62 milHon pounds, 20 mil- method is used commercially in the lion reach the consumer as fresh mush- production of baker's yeast and feed rooms, 18 million in cans, and 24 mil- yeast. More recently it has been applied lion as flavoring in soups. to the large-scale production of anti- Consumption might be even greater biotics, such as penicillin and strep- if production costs could be reduced. tomycin, as well as to the manufacture With the trend towards packaging pre- of citric and gluconic acids. })ared, ready-to-serve food products, The mycelium proved to be not too the use of mushroom flavor in a num- particular about the medium on which ber of such preparations doubtlessly it will grow, but it does have certain will increase. The problem is to incor- requirements. It seems now that a porate mushroom flavor without mark- good commercial product can be grown edly increasing the cost of the product. on any medium that contains a suit- The mushrooms in the retail mar- able sugar and other essential nutrients, kets are really the fruits of a plant that that does not contain an ingredient in- grows as a mat of fine strands or hibitory or toxic to the growth of the threads on the organic material in the mycelium, and that does not impart a soil or in a mushroom bed. When con- characteristic flavor of its own during ditions of temperature, moisture, and its use as a medium. food supply are right, such a mat, or mycelium, periodically forms mush- To OBTAIN PURE-CULTURE UlUsh- room fruits near the surface of the soil. room mycelium, \Wí: either germinated These are the familiar buttons and mushroom spon^s or made tissue cul- caps. Soon after they push up through tures of various parts of the mushroom. the bed they are ready for harvest. Then we grew the mycelium on an Although people over the w^orld cat agar medium in order to maintain the mushrooms of several species, in the pure cultures. The cultures may be in- United States only one species—Aga- oculated into sterilized compost, grain, ricus campestris—is grown commer- or tobacco stems, and allowed to grow cially. to provide the material known in the In 1947, I discovered that the vege- trade as mushroom spawn. The spawn, tative, or underground, part (myce- w^hen planted in mushroom beds, pro- lium) of that species will grow under duces the mushrooms sold commer- conditions of submerged propagation. cially. 242 PRODUCTION OF MUSHROOM MYCELIUM 243 For the submerged propagation of stag(i. That is, we have grown all three the mycelium, the procedure now in strains in 40-gallon batches in our use consists in transferring some of the pilot-plant fermentor. Each batch has mycelium grown on agar in a test tube produced 35 to 38 pounds of mycelial to 50 milliliters of sterile liquid me- cake with good mushroom flavor. dium in a 250-milliliter Erlenmeyer In both the Fernbach and the larger (conical) flask. The flasks are shaken fermentors, a rate of air flow of 1 liter on a machine in a room at 77° F. until of air a minute per liter of culture a heavy growth of mycelium has de- medium gives rapid growth. Lower veloped. The time usually required is rates give slower growth. Higher rates 5 to 6 days. This inoculum is then trans- do not materially increase the growth ferred to 2 liters of medium in fer- rate. mentors made from Fernbach (spheri- We harvest when good growth and cal ) flasks and incubated to maximum good mushroom flavor have been pro- growth. This culture suspension is used duced in the large fermentors by taking as inoculum in the larger fermentors out half to three-fourths of the culture with a culture-medium capacity of 16 and adding an equal volume of fresh to 20 liters. sterile culture medium. In this man- It has been necessary to consider var- ner a number of consecutive harvests iations in so-called strains of Agaricus are obtained without contamination of campestris. Plant species, like animal the culture medium. species, have familylike variations. Immediately after harvesting, we Therefore I have isolated and tested separate the mycelium from the culture more than 40 cultures of strains of liquid by centrifuging. Then we re- Agaricus campestris. suspend the mycelium cake in water Among them I have found three that and again centrifuge. are well able to adapt themselves to \¥e pack the mycelium into suitable growth in an agitated, aerated liquid cans and seal and sterilize the filled medium. Each has characteristic mush- cans at 15 pounds of steam pressure room flavor. Each can be distinguished for 20 minutes. In some cases we have from the others by a characteristic dif- frozen it and stored it in a freezer until ference in flavor. Two of the strains used. Drying the mycelium, either by were isolated from mushrooms of the lyophilizing (drying under vacuum white variety and one from the cream from the frozen state) or on a drum or brown variety of Agaricus cam- drier, has been tried, with some loss of pestris. All have certain characteristics flavor in both cases. in common. They grow more rapidly We have obtained good yields on than the other isolations. The hyphac, media composed of juices pressed from or mycelial threads, are more slender. various fruit and vegetable wastes, They produce an abundance of so- such as asparagus butts and pear waste. called secondary spores in the liquid Our more recent investigations show medium. The secondary spores were that a desirable product is obtainable first described by Albert Kligman in from media made from pear waste, a 1932 at Pennsylvania State College. rice-bran extract, or beet molasses, and He found them in old cultures on also from a synthetic medium contain- solidified (agar) medium. From obser- ing dextrose and inorganic salts. Media vations up to the present time, it seems containing asparagus juice or alfalfa likely that the ability to produce the juice seemed to impart the flavor of secondary spores may account for the those constituents and were deemed ability of the strains to adapt them- less desirable. selves to submerged growth in a liquid Basic studies in progress in 1949 medium. demonstrated that the essential nutri- The process also has been carried ent requirements for the growth of the successfully through a semipilot-plant mycelium of A. cam.pestris are com- 244 1950-19 5 1 YEARBOOK OF AGRICULTURE paratively simple. Sources of nitrogen sition of the medium on the develop- utilized include ammonia^ urea^ pep- ment of the intensity of the mushroom tone, monosodium glutamate, a mix- flavor. ture of amino acids, and probably a Our tests on the possibilities of number of other nitrogen compounds. spawning mushroom beds by spraying Most of the sugars tested, which in- the liquid culture on the compost gave cluded hcxoscs, pentose^s, and disac- negative results. The mycelium grows charides. give good growth. The poly- very rapidly, forming a white mat over saccharides (soluble starch and dex- the surface of the compost bed over- trin) also arc suitable sources. How- night, and then disappears nearly as ever, a form of soluble cellulose (sodi- quickly. The hyphae apparently are um carboxymcthyl cellulose) cannot unable to penetrate into the compost be fermented. Apparently a wide range or arc unable to compete wdth the of carbohydrates can serve as sources other micro-organisms present. This of energy for growth of mycelium of method of seeding beds of compost, if A. campestris. successful, would help reduce the costs We have determined approximate of the commercial grower who sup- optimum concentrations for the vari- plies the commercial trade with mush- ous elements rccjuired and have devel- room fruit caps. oped a basal medium which contains We have grow'n these cultures in our the required amounts of sugar, nitro- laboratory on rye grain by the method gen, phosphorus, potassium, mag- used in making commercial grain nesium, sulfur, calcium, and the trace spawn. When w^e used grain spawn to elements, iron, manganese, zinc, and start beds in the customary commercial copper. manner, the hyphae formed an excel- The development of this synthetic lent fluffy growth on the grain, but medium of know composition and the again were unable to grow and spread determination of the nutrient require- into the compost. It may well be that ments and utilization of various nitro- these strains are spontaneous mutants, gen and energy sources aid in investi- which can reproduce themselves only gations on the suitability of various vegetatively in pure culture medium. media made from fruit and vegetable Results of analyses of mushroom wastes. If the composition of the press mycelium produced by submerged fer- juice of a particular waste material is mentation show a protein content (ni- known, a preliminary forecast can be trogen X 6.25) of 49.1 percent, fat 3.1 made on the suitability of the w^astc as percent, and mineral constituents, as a source of substrate for mushroom ash, 8.1 percent, calculated on a mois- mycelium production.
Recommended publications
  • Introduction to Mycology
    INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1.
    [Show full text]
  • Fulfilling Koch's Postulates Confirms the Mycotic Origin of Lethargic Crab
    Antonie van Leeuwenhoek (2011) 99:601–608 DOI 10.1007/s10482-010-9531-4 ORIGINAL PAPER Fulfilling Koch’s postulates confirms the mycotic origin of Lethargic Crab Disease Raphael Ore´lis-Ribeiro • Walter A. Boeger • Vaˆnia A. Vicente • Marcelo Chammas • Antonio Ostrensky Received: 31 August 2010 / Accepted: 12 November 2010 / Published online: 9 December 2010 Ó Springer Science+Business Media B.V. 2010 Abstract In the northeast region of the Brazilian experiments. Disease-free specimens of U. cordatus coast, a disease has been causing massive mortalities were experimentally infected with Exophiala cance- of populations of the mangrove land crab, Ucides rae (strain CBS 120420) isolate. During the 30-day cordatus (L.) since 1997. The clinical signs of this experimental period, only a single death was observed disease, which include lethargy and ataxia, led to the within the control crabs. However, at the end of this disease being termed Lethargic Crab Disease (LCD). period, crabs that were inoculated once or three-times Evidence from a variety of sources indicates that there with mycelial elements and hyphae of E. cancerae is an association between LCD and a new species of had a 60% and 50% mortality rates, respectively black yeast, Exophiala cancerae de Hoog, Vicente, (n = 6 and n = 5). These results support that the Najafzadeh, Badali, Seyedmousavi & Boeger. This fungal agent is pathogenic and is the causative agent study tests this putative correlation through in vivo of LCD. Species-specific molecular markers confirm the presence of E. cancerae (strain CBS 120420) in recovered colonies and tissue samples from the R. Ore´lis-Ribeiro Á W.
    [Show full text]
  • Mycelium What Lies Beneath Website
    What Lies Beneath The fungus among us holds promise for medical breakthroughs, as well as our survival. By Jane Morton Galetto With the dampness of fall comes a crop of wild mushrooms in many shapes, colors, and sizes. Mycophagists, people who hunt for edible mushrooms, are exploring the woods for their quarry. What we see above the ground, the mushroom, is the reproductive part of the organism. It does not need light to trigger its production. Rather, four things are necessary: first rain, and then the evaporative cooling enabled by the moisture. This encourages the mycelium to wick up to the surface; it exhales carbon dioxide, inhales oxygen, and the infant mushroom begins to grow. Lastly light is necessary to produce spore-bearing fruit. The rotting sporulating spores germinate mycelium on the surface. These may appear as a web before going subterranean and out of sight. This collection of threads or hyphae is the mycelium. Some have described the white filaments as the internet of the forest. One inch of hyphae, if stretched out, might equal as much as 8 miles of cells. A mushroom is not a plant, it is a fungus, and the threads are not roots but are its feeding structure. The most famous mat of mycelium is considered the largest single organism in the world. At Malheur National Forest in the Blue Ridge Mountains of Oregon, a colony of Armillaria solidipes, or honey fungus, is over 2,400 years old and covers an estimated 2,200 acres. This is evidenced by the dying trees. The Armillaria causes a root disease that kills western red cedar and white pine.
    [Show full text]
  • Paracoccidioides Brasiliensis During Mycelium-To-Yeast Dimorphism Of
    Downloaded from Evidence for the Role of Calcineurin in Morphogenesis and Calcium Homeostasis during Mycelium-to-Yeast Dimorphism of http://ec.asm.org/ Paracoccidioides brasiliensis Claudia B. L. Campos, Joao Paulo T. Di Benedette, Flavia V. Morais, Rafael Ovalle and Marina P. Nobrega Eukaryotic Cell 2008, 7(10):1856. DOI: 10.1128/EC.00110-08. Published Ahead of Print 5 September 2008. on February 12, 2014 by UNIVERSIDADE EST.PAULISTA JÚLIO DE MESQUITA FILHO Updated information and services can be found at: http://ec.asm.org/content/7/10/1856 These include: REFERENCES This article cites 39 articles, 17 of which can be accessed free at: http://ec.asm.org/content/7/10/1856#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Downloaded from EUKARYOTIC CELL, Oct. 2008, p. 1856–1864 Vol. 7, No. 10 1535-9778/08/$08.00ϩ0 doi:10.1128/EC.00110-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Evidence for the Role of Calcineurin in Morphogenesis and Calcium Homeostasis during Mycelium-to-Yeast Dimorphism of Paracoccidioides brasiliensisᰔ http://ec.asm.org/ Claudia B. L. Campos,1* Joao Paulo T. Di Benedette,1 Flavia V. Morais,1 Rafael Ovalle,2 and Marina P. Nobrega1† Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Sao Paulo, 12244-000, Brazil,1 and Department of Biology, Brooklyn College of the City University of New York, New York 112102 Received 27 March 2008/Accepted 21 August 2008 on February 12, 2014 by UNIVERSIDADE EST.PAULISTA JÚLIO DE MESQUITA FILHO Paracoccidioides brasiliensis is a dimorphic fungus that causes paracoccidioidomycosis, the most prevalent human deep mycosis in Latin America.
    [Show full text]
  • Blue Green Mold on Mycelium
    Blue Green Mold On Mycelium I was right on that front and the mold got it’s ass kicked. This looked like a very serious bout of white furry mold, like you get on old jam left at the back of a cupboard. Figure 5 • Blue mold first appears as pale yellow blemishes, watery soft spots, and occasionally purple-red stain on scales. Mycelium is the vegetative part of the fungus. Match each of the names of the dimorphic fungal species from the drop-down box with its mold form shown below. To conclude, PFAD is a potential candidate of dye adsorbent. I was very eager for the second flush to happen because I had plans to take them with a friend. This mycelium can then produce mushrooms on the surface of the. Go on to the PF micro peroxide brown rice cloning tek to clean up the mold through sub culturing with peroxide and on to the. The terms mould and mildew are commonly used interchangeably, although mould is often applied to black, blue, green, and red fungal growths, and mildew to whitish ones. They want to know what to use to kill mold safely and effectively. And with Windows 10, you can tap into a Night Shift feature to shift the color Oct 10, 2020 · Mycelium is a variant of dirt that is found naturally in mush. The blue veins are actually edible forms of mold which are injected into the curd process during processing. Identifying Pink and Gray Snow Mold. Gray snow mold • Symptoms: – Circular patches visible after snow melt – Size of spots ranges from 1in.
    [Show full text]
  • Four New Ophiostoma Species Associated with Conifer- and Hardwood-Infesting Bark and Ambrosia Beetles from the Czech Republic and Poland
    Antonie van Leeuwenhoek (2019) 112:1501–1521 https://doi.org/10.1007/s10482-019-01277-5 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Four new Ophiostoma species associated with conifer- and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland Robert Jankowiak . Piotr Bilan´ski . Beata Strzałka . Riikka Linnakoski . Agnieszka Bosak . Georg Hausner Received: 30 November 2018 / Accepted: 14 May 2019 / Published online: 28 May 2019 Ó The Author(s) 2019 Abstract Fungi under the order Ophiostomatales growth rates, and their insect associations. Based on (Ascomycota) are known to associate with various this study four new taxa can be circumscribed and the species of bark beetles (Coleoptera: Curculionidae: following names are provided: Ophiostoma pityok- Scolytinae). In addition this group of fungi contains teinis sp. nov., Ophiostoma rufum sp. nov., Ophios- many taxa that can impart blue-stain on sapwood and toma solheimii sp. nov., and Ophiostoma taphrorychi some are important tree pathogens. A recent survey sp. nov. O. rufum sp. nov. is a member of the that focussed on the diversity of the Ophiostomatales Ophiostoma piceae species complex, while O. pityok- in the forest ecosystems of the Czech Republic and teinis sp. nov. resides in a discrete lineage within Poland uncovered four putative new species. Phylo- Ophiostoma s. stricto. O. taphrorychi sp. nov. together genetic analyses of four gene regions (ITS1-5.8S-ITS2 with O. distortum formed a well-supported clade in region, ß-tubulin, calmodulin, and translation elonga- Ophiostoma s. stricto close to O. pityokteinis sp. nov. tion factor 1-a) indicated that these four species are O.
    [Show full text]
  • BIOL 1030 – TOPIC 3 LECTURE NOTES Topic 3: Fungi (Kingdom Fungi – Ch
    BIOL 1030 – TOPIC 3 LECTURE NOTES Topic 3: Fungi (Kingdom Fungi – Ch. 31) KINGDOM FUNGI A. General characteristics • Fungi are diverse and widespread. • Ten thousand species of fungi have been described, but it is estimated that there are actually up to 1.5 million species of fungi. • Fungi play an important role in ecosystems, decomposing dead organisms, fallen leaves, feces, and other organic materials. °This decomposition recycles vital chemical elements back to the environment in forms other organisms can assimilate. • Most plants depend on mutualistic fungi to help their roots absorb minerals and water from the soil. • Humans have cultivated fungi for centuries for food, to produce antibiotics and other drugs, to make bread rise, and to ferment beer and wine • Fungi play ecological diverse roles - they are decomposers (saprobes), parasites, and mutualistic symbionts. °Saprobic fungi absorb nutrients from nonliving organisms. °Parasitic fungi absorb nutrients from the cells of living hosts. .Some parasitic fungi, including some that infect humans and plants, are pathogenic. .Fungi cause 80% of plant diseases. °Mutualistic fungi also absorb nutrients from a host organism, but they reciprocate with functions that benefit their partner in some way. • Fungi are a monophyletic group, and all fungi share certain key characteristics. B. Morphology of Fungi 1. heterotrophs - digest food with secreted enzymes “exoenzymes” (external digestion) 2. have cell walls made of chitin 3. most are multicellular, with slender filamentous units called hyphae (Label the diagram below – Use Textbook figure 31.3) 1 of 11 BIOL 1030 – TOPIC 3 LECTURE NOTES Septate hyphae Coenocytic hyphae hyphae may be divided into cells by crosswalls called septa; typically, cytoplasm flows through septa • hyphae can form specialized structures for things such as feeding, and even for food capture 4.
    [Show full text]
  • Neither Plant Nor Animal: Microbiology
    Unit 2: Microbiology – Pre-Reading Sylvan Kaufman, Ph.D. Slide 1 Neither Plant Nor Animal: Microbiology Sylvan Kaufman, Ph.D. www.SylvanGreenEarth.com (most fungi photos by Wallace Kaufman unless otherwise noted) In this unit we will learn about some non-living organisms; viruses, viroids, and prions, and representatives of four Kingdoms, the Archaea, Bacteria, Protista and Fungi. It may seem strange to learn about non-living organisms that you can’t see without a powerful microscope, but they play important roles in ecosystems, and you might be surprised how often they are in the news! Unit 2: Microbiology – Pre-Reading Sylvan Kaufman, Ph.D. Slide 2 Viruses Image from the Center for Disease Control depicting an RNA virus with its protein coat. Viruses were discovered in 1898 when researchers studying foot and mouth disease and tobacco mosaic virus discovered they were caused by an infectious particle smaller than a bacteria. Viruses are not considered to be “alive” because they cannot reproduce on their own. Instead they insert their genetic material into a host cell, taking over the host cell’s functions. The virus uses the host to make new copies of itself. The genetic material of a virus, DNA or RNA, is contained within a protein coat. Sometimes the protein coat is surrounded by a lipid envelope. Viruses are able to inherit genetic mutations and they are subject to natural selection. Viruses are used in genetic engineering to insert pieces of DNA into plant or animal cells. For example, a virus could be used to insert a gene coding for herbicide resistance into a soybean plant.
    [Show full text]
  • Characterization of an Inducible Citrate Uptake System in Penicillium Simplicissimum
    FEMS Microbiology Letters 213 (2002) 21^26 www.fems-microbiology.org Characterization of an inducible citrate uptake system in Penicillium simplicissimum Martin Síimkovic› a, Michal Kalin›a¤k a, Wolfgang Burgstaller b, L’udov|¤t Varec›ka a;Ã a Department of Biochemistry and Microbiology, Slovak University of Technology, Radlinske¤ho 9, 81102 Bratislava, Slovak Republic Downloaded from https://academic.oup.com/femsle/article/213/1/21/516581 by guest on 23 September 2021 b Institute of Microbiology, Leopold-Franzens-University Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria Received 20 March 2002; received in revised form 4 May 2002; accepted 10 May 2002 First published online 3 June 2002 Abstract When citrate was used as a sole source of carbon, citrate uptake by Penicillium simplicissimum increased 267-fold (if glucose-grown mycelium was adapted to citrate) or 1400-fold (if the fungus was grown on citrate) compared to glucose-grown mycelium. Inhibition of macromolecular synthesis prevented this stimulation of citrate uptake. Citrate uptake by glucose-grown mycelium was low (0.0015 nmol 31 31 31 min (mg DW) ) and most probably due to diffusion of undissociated citric acid. Citrate-adapted mycelium had a KM of 65 Wmol l 31 31 31 31 31 and a Vmax of 0.34 nmol min (mg DW) . In citrate-grown mycelium KM was 318 Wmol l and Vmax was 8.5 nmol min (mg DW) . Citrate uptake was inhibited by sodium azide and uncouplers (TCS, 3,3P,4P,5-tetrachlorosalicylanilide; FCCP, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone). Because of this we postulate that the induced citrate uptake must be an active transport process.
    [Show full text]
  • Advanced Mycelium Materials As Potential Self-Growing Biomedical
    www.nature.com/scientificreports OPEN Advanced mycelium materials as potential self‑growing biomedical scafolds Maria Elena Antinori1,2, Marco Contardi1, Giulia Suarato1,3, Andrea Armirotti4, Rosalia Bertorelli3, Giorgio Mancini1, Doriana Debellis5 & Athanassia Athanassiou1* Mycelia, the vegetative part of fungi, are emerging as the avant‑garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self‑growing and interconnected fbrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fbrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self‑growing bio‑composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio‑scafolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fbroblasts are investigated. The fndings demonstrate the potentiality of mycelia as all‑natural and low‑cost bio‑scafolds, alternative to the tissue engineering systems currently in place. Extracellular matrix (ECM) is composed of several macromolecules, and its role is to provide physical support, communication pathways, and 3D organization to the cells in organs and tissues (Fig. 1a)1,2. ECMs difer in terms of porosity, mechanical properties and biochemical cues for attachment, depending on the types of cells they support and the tissues in which they reside3.
    [Show full text]
  • Marine Fungi from the Sponge Grantia Compressa: Biodiversity, Chemodiversity, and Biotechnological Potential
    marine drugs Article Marine Fungi from the Sponge Grantia compressa: Biodiversity, Chemodiversity, and Biotechnological Potential Elena Bovio 1,5, Laura Garzoli 1, Anna Poli 1, Anna Luganini 2 , Pietro Villa 3, Rosario Musumeci 3 , Grace P. McCormack 4, Clementina E. Cocuzza 3, Giorgio Gribaudo 2 , Mohamed Mehiri 5,* and Giovanna C. Varese 1,* 1 Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy; [email protected] (E.B.); [email protected] (L.G.); [email protected] (A.P.) 2 Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; [email protected] (A.L.); [email protected] (G.G.) 3 Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; [email protected] (P.V.); [email protected] (R.M.); [email protected] (C.E.C.) 4 Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; [email protected] 5 University Nice Côte d’Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, 60103 Nice, France * Correspondence: [email protected] (M.M.); [email protected] (G.C.V.); Tel.: +33-492-076-154 (M.M.); +39-011-670-5964 (G.C.V.) Received: 24 December 2018; Accepted: 8 April 2019; Published: 11 April 2019 Abstract: The emergence of antibiotic resistance and viruses with high epidemic potential made unexplored marine environments an appealing target source for new metabolites.
    [Show full text]
  • Fungal Mycelium; the Key to a Sustainable Future
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Environmental Studies Undergraduate Student Theses Environmental Studies Program 2020 Fungal Mycelium; The Key to a Sustainable Future Sawyer Krivanek University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/envstudtheses Part of the Environmental Education Commons, Natural Resources and Conservation Commons, and the Sustainability Commons Disclaimer: The following thesis was produced in the Environmental Studies Program as a student senior capstone project. Krivanek, Sawyer, "Fungal Mycelium; The Key to a Sustainable Future" (2020). Environmental Studies Undergraduate Student Theses. 266. https://digitalcommons.unl.edu/envstudtheses/266 This Article is brought to you for free and open access by the Environmental Studies Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Environmental Studies Undergraduate Student Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Fungal Mycelium; the key to a sustainable future An Undergraduate Thesis Paper By Sawyer Krivanek Presented to The Environmental Studies Program at the University of Nebraska-Lincoln In Partial Fulfillment of Requirements For the Degree of Bachelor of Science/Arts Major: Environmental Studies Emphasis Area: Energy Science Thesis Advisor: Bob Henrickson Thesis Reader: Karma Larsen Lincoln, NE April 2020 Fungal Mycelium; the key to a sustainable future Sawyer Krivanek, B.S. University of Nebraska-Lincoln, 2020 Advisor: Bob Henrickson Abstract This study focuses on fungal mycelium-based packaging as a biodegradable replacement of polystyrene packaging. In this thesis project, there will be a thorough study of the characteristics of fungal mycelium and how it can be combined with other products to create biodegradable packaging.
    [Show full text]