Animals, Magic and Biodiversity Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Animals, Magic and Biodiversity Conservation Fantastic beasts and why to conserve them: animals, magic and biodiversity conservation G EORGE H OLMES,THOMAS A NEURIN S MITH and C AROLINE W ARD Abstract There is a broad set of human beliefs, attitudes interactions produce benefits and costs for both biodiversity and behaviours around the issue of magical animals, refer- and people. Yet there is an often-overlooked complexity to ring to both mythical animals not recognized by science and these cases, with important implications for conservation extant animals that are recognized by science but have outcomes. The species involved are either not recognized magical properties. This is a broad issue ranging from spir- by science, or the properties of these species that local people itual beliefs around mythical animals living in Malagasy for- resent or value are not recognized by science. The Icelandic ests, to cultural heritage associated with the Loch Ness protesters were protecting the habitat of Huldufólk, or elves. Monster in Scotland. Beliefs and behaviours around magical Ecotourists in Scotland were seeking the Loch Ness Monster animals can have positive and negative impacts on biodiver- Nessiteras rhombopteryx. The Ethiopian hyaenas provide sity conservation goals. Yet, so far, the discipline of conser- the ecosystem service of eating evil spirits. The Malagasy vation biology has not adequately considered magical snakes harm humans and cattle by transforming into animals, neglecting to account for the broader knowledge sharp spear-like forms and dropping from trees. We argue from outside the natural sciences on this issue, and taking that conservationists should take magical animals seriously, a narrow, utilitarian approach to how magical animals because they have important positive and negative implica- should be managed, without necessarily considering the tions for many species and habitats. Magical animals have broader impacts on conservation goals or ethics. Here we been neglected and oversimplified within conservation, explore how magical animals can influence conservation probably because of a lack of training in relevant disciplines goals, how conservation biology and practice has thought and an overly utilitarian view of human–animal relations, about magical animals, and some of the limitations of cur- and this has harmed the ability to conserve species. rent approaches, particularly the failure to consider magical We begin with a brief typology of magical and mythical animals as part of wider systems of belief and culture. We animals, before outlining the complexities and diversity in argue that magical animals and their implications for con- beliefs on magical and mythical animals across the global servation merit wider consideration. South and North. We then explore how magical animals affect broader conservation goals, and how they compare Keywords Conservation, ethics, Madagascar, magic, to other spiritual and similar issues in conservation, snakes, spirituality, Tanzania followed by a critique of existing conservation literature on magic. Two case studies of magical animals, in Madagascar and Tanzania, illustrate in detail some of Introduction these trends in two countries with significant conservation activity, and the inadequacies of how conservation has ap- n a proposed new highway in Iceland was contested proached magical animals. We conclude by exploring ways Iin court on the basis that it would cross the habitat of a to understand the conservation implications of magical valued species (The Guardian, ). In , , tour- creatures. ists visited a site in Scotland primarily because it is inhabited by a rare, endemic animal (ASVA, ), supporting a thriving ecotourism industry. Hyaenas Crocuta crocuta in Ethiopia Magic, animals and contemporary human societies are tolerated because they provide vital provisioning ecosys- tem services that benefit local communities (Baynes-Rock, Magical animals are complex. They are found worldwide, al- ). In Madagascar, in contrast, some snakes are per- though beliefs are locally specific and dynamic. They blur secuted because they provide ecosystem disservices, harm- boundaries between magic, spirituality, culture, tradition ful to human health (Tingle, ). These are seemingly and politics. We discuss here two kinds of magical animals: – straightforward conservation stories, where human animal mythical species not recognized by science, such as the Loch Ness Monster and Icelandic elves, and extant-but-magical species that are recognized by science but have properties GEORGE HOLMES (Corresponding author) and CAROLINE WARD University of Leeds, UK. E-mail [email protected] that are not, such as spirit-eating in hyaenas, or spear-like THOMAS ANEURIN SMITH University of Cardiff, UK behaviours in snakes. This joint focus is justified for three Received December . Revision requested March . reasons. Firstly, both are associated with protection of spe- Accepted April . First published online July . cies and habitats in many locations, including in Western/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence Downloaded(http://creativecommons.org/licenses/by/4.0/), from https://www.cambridge.org/core. IP whichaddress: permits 170.106.202.126 unrestricted re-use,, on 28 distribution,Sep 2021 at and10:31:55 reproduction, subject in to any the medium, Cambridge provided Core thtermse original of use, work available is properly at cited. https://www.cambridge.org/core/termsOryx, 2018, 52(2), 231–239 ©. https://doi.org/10.1017/S003060531700059X2017 Fauna & Flora International doi:10.1017/S003060531700059X 232 G. Holmes et al. ‘modern’/‘scientific’ societies and cultures. Secondly, where- In Sikkim, India, the Lepcha people have harnessed their as zoologists would distinguish between mythical and spiritual worldviews in an ethnic–nationalist project, extant-but-magical, local people treat them in very similar, (re)constructing their indigenous identity around sacred if not identical, ways. From the perspective of studying forest and species protection (Arora, ). By laying human culture and behaviour, the divisions between when claim to sacred spaces and species as being under their a creature is regarded as extant, mythical or as heritage can care, particular indigenous cultures could gain access to, be somewhat artificial. Thirdly, both have been neglected and control over, places and resources. within mainstream conservation literature. Here we define conservation as activities to preserve biological diversity and its associated values and services. Magical animals, conservation rationalities and the Concern for magical animals, and a broader assemblage conservation of non-magical biodiversity between the spiritual and the ecological, is not confined to indigenous communities of the global South (Abrahams, For conservationists, interactions between humans and ). Societies of the global North remain suffused with magical animals can be categorized according to how they magic, spiritualism, witchcraft and the occult (Comaroff & benefit or harm extant biodiversity, although these categor- Comaroff, ). There are degrees by which individuals in ies can overlap and interact in complex ways. Firstly, some all societies may hold the supposedly dissected worldviews species are tolerated or encouraged because of a belief in of the scientific and the spiritual, magical or religious, evi- their magical properties. In Accra, Ghana, vultures are asso- denced by the persistence of the fantastic (including magical ciated with magic, and therefore harming them is consid- animals) in popular culture (Rountree, ), and in major ered to bring bad luck (Campbell, ). This leads to and minor religions, cults and witchcrafts (Moore & demonstrable differences in attitudes and behaviours to- Sanders, ). Beliefs in magical animals are dynamic, wards vultures between those who hold these beliefs, and and can transcend from the spiritual or mystical to become those who do not. Such beliefs are most likely to be held cultural heritage (Comaroff & Comaroff, ), such as the by older women, and least likely to be held by younger Loch Ness Monster, Welsh dragons and the Beast of men, who tend to have a formal, western-informed educa- Bodmin Moor in the UK, trolls in Denmark (Karrebæk & tion, although increasing numbers of scavengers may Maegaard, ), and various lake-dwelling monsters across strengthen magical beliefs (Campbell, ). The spread the globe, including the Kanas Lake Monster in Xinjiang, of nationalized formal education, conversion to major reli- China, the Seljordsormen in Norway, the Lagarfjót Worm gions, and heightened immigration to certain communities in Iceland, and the Storsjöodjuret of Sweden (the latter have all reduced the efficacy of local worldviews and asso- was briefly given protected status by the Swedish ciated magical creatures (Metcalfe et al., ), although Environmental Protection Agency but this was later revoked witchcraft and spiritualism appear to be rising in modern by the Swedish Parliament; Sandelin, ). Alongside these Africa (Kohnert, ). The survival of large predators out- notable mythical creatures are more general magical asso- side protected areas depends on their acceptance or toler- ciations with extant species; for example, black cats and ance by local communities, forged by place-specific magpies (Peltzer, ). Ongoing shifts are partly attribut- circumstances in which spiritual beliefs may play a key able to syncretic religions appropriating pagan, folk and in-
Recommended publications
  • Quantifying the Conservation Value of Plantation Forests for a Madagascan Herpetofauna
    Herpetological Conservation and Biology 14(1):269–287. Submitted: 6 March 2018; Accepted: 28 March 2019; Published: 30 April 2019. QUANTIFYING THE CONSERVATION VALUE OF PLANTATION FORESTS FOR A MADAGASCAN HERPETOFAUNA BETH EVANS Madagascar Research and Conservation Institute, Nosy Komba, Madagascar current address: 121 Heathway, Erith, Kent DA8 3LZ, UK, email: [email protected] Abstract.—Plantations are becoming a dominant component of the forest landscape of Madagascar, yet there is very little information available regarding the implications of different forms of plantation agriculture for Madagascan reptiles and amphibians. I determined the conservation value of bamboo, secondary, open-canopy plantation, and closed-canopy plantation forests for reptiles and amphibians on the island of Nosy Komba, in the Sambirano region of north-west Madagascar. Assistants and I conducted 220 Visual Encounter Surveys between 29 January 2016 and 5 July 2017 and recorded 3,113 reptiles (32 species) and 751 amphibians (nine species). Closed-canopy plantation supported levels of alpha diversity and community compositions reflective of natural forest, including several threatened and forest-specialist species. Open-canopy plantation exhibited diminished herpetofaunal diversity and a distinct community composition dominated by disturbance-resistant generalist species. Woody tree density and bamboo density were positively correlated with herpetofaunal species richness, and plantation species richness, plantation species density, sapling density, and the proportion of wood ground cover were negatively associated with herpetofaunal diversity. I recommend the integration of closed-canopy plantations on Nosy Komba, and across wider Madagascar, to help mitigate the negative effects of secondary forest conversion for agriculture on Madagascan herpetofauna; however, it will be necessary to retain areas of natural forest to act as sources of biodiversity for agroforestry plantations.
    [Show full text]
  • Notes Sur Les Serpents De La Région Malgache VI. Le Genre Ithycyphus Giinther, 1873 ; Description De Deux Espèces Nouvelles
    Bull. Mus. natn. Hist, nat., Paris, 4E sér., 8, 1986, section A, n° 2 : 409-434. Notes sur les Serpents de la région malgache VI. Le genre Ithycyphus Giinther, 1873 ; description de deux espèces nouvelles par Charles A. DOMERGUE Résumé. — Jusqu'à présent, le genre Ithycyphus n'était connu que par ses deux espèces clas- siques : /. goudoti (Schlegel, 1837) taxon relativement homogène et bien caractérisé, et /. miniatus (Schlegel, 1837). Par l'examen in vivo de nombreux spécimens et l'étude des sujets conservés, nous montrons qu'I. miniatus sensu lato comprend en réalité trois formes spécifiques : l'espèce nominative qui habite le nord et le nord-ouest de Madagascar, remarquable essentiellement par son dimorphisme sexuel de coloration ; /. perineti n. sp., des forêts de l'est, sans dimorphisme, et en outre caractérisé par ses écailles vertébrales carénées ; /. oursi n. sp., du sud et du sud-ouest, non dimorphe, vertébrales lisses, et de coloration particulière. Les hémipénis des quatre espèces sont décrits. Abstract. — The genus Ithycyphus is currently recognized as including two well-known species : /. goudoti (Schlegel, 1837), an homogeneous and quite distinguished taxon, and /. miniatus (Schlegel, 1837). Examination of living specimens of the latter, as well as preserved ones, let us to conclude that /. miniatus actually includes three distinct species : /. miniatus stricto sensu, from northern and north-western Madagascar, which exhibits a conspicuous pattern-color in connection with sexual dimorphism ; /. perineti, new species from the eastern Malagasy evergreen forest, without such a dimorphism, but with striking keeled vertebral scales ; /. oursi, new species from southern and south- western Madagascar, without the sexual dimorphism of /.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • A Note on Envenomation by the Madagascar Colubrid Snake
    Received: May 5, 2006 J. Venom. Anim. Toxins incl. Trop. Dis. Accepted: June 28, 2006 V.12, n.3, p.512-520, 2006. Abstract published on line: July 6, 2006 Case report. Full paper Published online: August 31, 2006 ISSN 1678-9199. ENVENOMATION BY THE MADAGASCAN COLUBRID SNAKE, Ithycyphus miniatus MORI A. (1), MIZUTA T. (2) (1) Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan; (2) Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan. ABSTRACT: We report two cases of envenomation by a Madagascan opisthoglyphous snake, Ithycyphus miniatus. In both cases, the snake bit the finger of a human who was preparing an experiment by tying a string around the snake body. Symptoms of the first case included temporal severe local pain and extensive bleeding. In the second case, severe pain accompanying obvious local swelling was caused and lasted for several hours. The present observations indicate that bite by I. miniatus potentially causes serious physiological effects in humans although the snake is basically calm and reluctant to bite. KEY WORDS: Madagascar, Colubrid, Ithycyphus miniatus, envenomation, opisthoglyph, Duvernoy's glands. CORRESPONDENCE TO: AKIRA MORI, Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502 Japan. Email: [email protected]. A. Mori and T. Mizuta ENVENOMATION BY THE MADAGASCAN COLUBRID SNAKE Ithycyphus miniatus. J. Venom. Anim. Toxins incl. Trop. Dis., 2006, 12, 3, p. 513 INTRODUCTION Madagascan colubrid snakes show a high species diversity and endemism. Currently, 74 species are known, and all of them are endemic to Madagascan region (15).
    [Show full text]
  • Miscellaneous Behavioural Observations of Malagasy Birds
    MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 1 3 | ISSUE 01 — DECEMBER 201 8 PAGE 70 SHORT NOTE http://dx.doi.org/1 0.431 4/mcd.v1 3i1 .8 Miscellaneous behavioural observations of Malagasy birds Charlie J. GardnerI and Louise D. Jasper Correspondence: Charlie J. Gardner Durrell Institute of Conservation and Ecology (DICE) School of Anthropology and Conservation, University of Kent United Kingdom Email: [email protected] ABSTRACT piégeage d’un Capucin de Madagascar Lepidopygia nana dans Madagascar possesses a unique avifauna characterized by high une toile d’araignée (Nephila sp.), et vii) le harcèlement des rep- endemism rates at species and higher taxonomic levels, but little tiles incluant des serpents (Ithycyphus miniatus, Acrantophis is known about the behaviour, diets and interspecific interactions madagascariensis) et un caméléon (Furcifer pardalis) par le of many species. We present a number of opportunistic observa- Souimanga malgache Nectarinia souimanga, le Shama de tions of Malagasy birds collected during 201 2–201 5, including a Madagascar Copsychus albospecularis, le Tchitrec malgache foraging association between Hook-billed vanga Vanga curvirostris Terpsiphone mutata, la Newtonie commune Newtonia and White-breasted mesite Mesitornis variegatus, aggressive in- brunneicauda et le Drongo malgache Dicrurus forficatus. teraction between a fledgling Madagascar cuckoo Cuculus rochii and its Common jery Neomixis tenella host, records of carnivory in Green-capped coua Coua ruficeps olivaceiceps and frugivory in Lafresnaye’s vanga Xenopirostris xenopirostris, an unusual aggre- gation of Alpine swift Tachymarptis melba around a telecommuni- Madagascar possesses a unique avifauna characterized by high cations tower, entrapment of Madagascar mannikin Lepidopygia levels of endemism at species and higher taxonomic levels.
    [Show full text]
  • Zootaxa, a New Mid-Altitude Rainforest Species of Typhlops (Serpentes
    Zootaxa 2294: 23–38 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new mid-altitude rainforest species of Typhlops (Serpentes: Typhlopidae) from Madagascar with notes on the taxonomic status of T. boettgeri Boulenger, T. microcephalus Werner, and T. capensis Rendahl VAN WALLACH1 & FRANK GLAW2 1Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138, USA. E-mail: [email protected] 2Zoologische Staatssammlung München, Münchhausenstrasse 21, 81247 München, Germany. E-mail: [email protected] Abstract We describe a new Typhlops species from mid-altitude rainforest (ca. 950 m elevation) of the Andasibe region in central eastern Madagascar. Typhlops andasibensis sp. nov. is a medium-sized species (up to 340 mm total length) and can be separated from all other Malagasy typhlopids by the combination of 26 midbody scale rows, less than 400 middorsals, and a T–V supralabial imbrication pattern. Typhlops microcephalus is confirmed as a valid species, T. boettgeri is resurrected from the synonymy of T. arenarius, and T. capensis is synonymized with Ramphotyphlops exocoeti. Keys to the three genera and 14 described species of Madagascar and Comoro typhlopids are provided. Key words: Typhlops, Ramphotyphlops, Xenotyphlops, Madagascar, Comoros, taxonomy, morphology, visceral anatomy Introduction The non-marine snake fauna of Madagascar consists of three families, Boidae (3 species), Colubridae sensu lato (76 species), and Typhlopidae (11 species). Many recent descriptions of new species (e. g. Cadle, 1996a– b, 1999; Nussbaum & Raxworthy, 2000; Glaw et al., 2005a–b, 2007, 2009; Mercurio & Andreone 2005; Wallach et al., 2007; Franzen et al., 2009) indicate that the inventory of Malagasy snakes is still far from complete.
    [Show full text]
  • Spatialisation Des Donnees Ecologiques De La Vegetation Pour La Conservation Des Unites Paysageres De La Peninsule D’Ampasindava
    Remerciements - UNIVERSITE D’ANTANANARIVO DOMAINE DES SCIENCES ET TECHNOLOGIES ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE L’ENVIRONNEMENT THESE POUR L’OBTENTION DU DIPLOME DE DOCTORAT EN SCIENCES DE LA VIE ET DE L’ENVIRONNEMENT SPECIALITE : SCIENCES DU VEGETAL SPATIALISATION DES DONNEES ECOLOGIQUES DE LA VEGETATION POUR LA CONSERVATION DES UNITES PAYSAGERES DE LA PENINSULE D’AMPASINDAVA Présenté par Jacquis A. TAHINARIVONY Soutenue publiquement le 7 novembre 2016 devant le jury composé de Président : Professeur RAKOUTH Bakolimalala Directeur de thèse : Professeur RAKOTOARIMANANA Vonjison Co-Directeur : Docteur GAUTIER Laurent Rapporteur interne : Professeur FARAMALALA Miadana Harisoa Rapporteur externe : Professeur RAKOTONDRAOMPIANA Solofo Examinateur : Professeur RAZANAKA Samuel Invité : Docteur ROGER Edmond i Remerciements REMERCIEMENTS Cette thèse est le fruit de plusieurs années de recherches, d’une longue traversée semée de découvertes, de difficultés et d’expériences inestimables. Pendant ces années, de nombreuses initiatives et efforts se sont associés pour contribuer au bon déroulement de ce travail par des personnes et institutions. Je ne saurais les oublier et j’aimerais témoigner ma reconnaissance et mes remerciements envers eux. - Professeur Bakolimalala RAKOUTH, Enseignant chercheur au Département de Biologie et Ecologie Végétales qui m’a fait l’honneur de présider cette thèse. - Professeur Vonjison RAKOTOARIMANANA, Enseignant chercheur au Département de Biologie et Ecologie Végétales, de m’avoir fait le grand honneur de diriger cette thèse et d’avoir prodigué de judicieux conseils. - Docteur Laurent GAUTIER, des Conservatoires et Jardin Botaniques de Genève, qui m’a encadré depuis la période de collecte des données sur le terrain jusqu’à la rédaction du travail. Ses partages de connaissances et expériences en flore de Madagascar et à la compréhension des différentes approches et principes d’analyse des données écologiques m’ont été précieux.
    [Show full text]
  • Comparing Species Tree Estimation with Large
    City University of New York (CUNY) CUNY Academic Works Publications and Research College of Staten Island 2015 Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes Sara Ruane American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA Christopher J. Raxworthy American Museum of Natural History Alan R. Lemmon Florida State University Emily Moriarty Lemmon Florida State University Frank T. Burbrink CUNY College of Staten Island How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/si_pubs/58 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Ruane et al. BMC Evolutionary Biology (2015) 15:221 DOI 10.1186/s12862-015-0503-1 RESEARCH ARTICLE Open Access Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes Sara Ruane1*, Christopher J. Raxworthy1, Alan R. Lemmon2, Emily Moriarty Lemmon2 and Frank T. Burbrink1,3 Abstract Background: Using molecular data generated by high throughput next generation sequencing (NGS) platforms to infer phylogeny is becoming common as costs go down and the ability to capture loci from across the genome goes up. While there is a general consensus that greater numbers of independent loci should result in more robust phylogenetic estimates, few studies have compared phylogenies resulting from smaller datasets for commonly used genetic markers with the large datasets captured using NGS.
    [Show full text]
  • The Evolution of Diet in the Lamprophiidae Hiral Naik 452805
    The evolution of diet in the Lamprophiidae Hiral Naik 452805 A Dissertation submitted to the School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa in fulfilment of the requirements of the degree of Master of Science. Johannesburg, South Africa July 2017 Declaration I declare that this dissertation is my own, unaided work unless specifically acknowledged in the text. It has not been submitted previously for any degree or examination at any other university, nor has it been prepared under the aegis or with the assistance of any other body or organization or person outside of the University of the Witwatersrand, Johannesburg, South Africa. ______________ Hiral Naik 13/07/2017 1 Abstract Studying feeding biology in a phylogenetic context helps elucidate the factors that significantly influenced the evolutionary history of organisms. The snake lineage is one of the most morphologically and ecologically diverse clades of vertebrates due to a variety of traits (e.g. venom, body shape, gape size and habitat use) that have enabled their exceptional radiation. Recently, the Deep History Hypothesis (DHH) has been used to explain how divergence, deep in the evolutionary history of snakes, has resulted in present day niche preferences. The Competition-Predation Hypothesis (CPH) contrastingly attributes current ecological traits to recent species interactions. Diet has been a key factor in shaping snake diversity and ecology, and it has often been used as a proxy to understand current snake community structure and evolutionary trends in snakes. I tested the validity of the two evolutionary hypotheses in the Lamprophiidae, a family of primarily African snakes.
    [Show full text]