Phenomenological Equivalent Circuit Modeling of Various Energy Storage Devices Michael C
Total Page:16
File Type:pdf, Size:1020Kb
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2014 Phenomenological Equivalent Circuit Modeling of Various Energy Storage Devices Michael C. Greenleaf Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING PHENOMENOLOGICAL EQUIVALENT CIRCUIT MODELING OF VARIOUS ENERGY STORAGE DEVICES By MICHAEL C. GREENLEAF A Dissertation submitted to the Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded Spring Semester, 2014 Michael Greenleaf defended this dissertation on April 7, 2014. The members of the supervisory committee were: Jim Zheng Professor Directing Dissertation Chiang Shih University Representative Helen Li Committee Member Petru Andrei Committee Member Pedro Moss Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS I would like to acknowledge the following people for their support, guidance, instruction and advice: My committee—Drs. Helen Li, Petru Andrei, Chiang Shih, and Pedro Moss. My lab mates and friends—Drs. W. Cao, Q. Wu, W. Zhu, J.S. Zheng, G.Q. Zhang, H. Zhang, H. Ma, Mr. Shellikeri, Tawari, Ravindra, Chen, Hagen, Shih, Dalchand, Adams, Cappetto, Yao, and Nelson. Faculty, staff and professors—Drs. K. Arora, R. Arora, B. Harvey, S. Foo, L. Tung, Mr. Sapronetti and Mrs. Jackson and Butka. With the utmost gratitude I wish to acknowledge Dr. Jim P. Zheng, my PI and mentor. Without his guidance and support, instruction and concern, I would not have attained my research and academic goals. Lastly, I wish to acknowledge my parents, Herbert and Sheila Greenleaf and my bride-to-be Karen Doster. Without their love and support I would not be the man I am or have achieved the position I hold today. iii TABLE OF CONTENTS List of Tables ...................................................................................................................... vi List of Figures .................................................................................................................... vii Abstract .............................................................................................................................. xii 1. INTRODUCTION TO ELECTROCHEMISTRY ............................................................1 1.1. Redox Reactions .......................................................................................................1 1.2. Overpotentials and Ohmic Resistance .......................................................................3 1.3. Passivation ................................................................................................................7 1.4. Li-ion Battery Mechanics ..........................................................................................8 1.5. Lead Acid Battery Mechanics ................................................................................. 12 1.6. Capacitor Mechanics ............................................................................................... 13 1.7. Chapter Summary ................................................................................................... 16 2. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY AND PHENOMENOLOGICAL EQUIVALENT CIRCUIT MODELING .............................. 17 2.1. EIS Operation ......................................................................................................... 17 2.2. Electronic Circuits and EIS Representation ............................................................. 19 2.3. Phenomenological Equivalent Circuit Elements ...................................................... 27 2.4. Chapter Summary ................................................................................................... 34 3. AN EXAMPLE OF PHENOMENOLOGICAL EQUIVALENT CIRCUIT MODELING ................................................................................................................. 35 3.1. Introduction to PECM—the Lithium Iron Phosphate Battery................................... 35 3.2. PECM Testing Procedure ........................................................................................ 35 3.3. Application of PECM ............................................................................................. 37 3.4. Evaluation of PECM Performance .......................................................................... 42 3.5. Chapter Summary ................................................................................................... 47 4. ELECTROCHEMICAL ANALYSIS THROUGH PHENOMENOLOGICAL EQUIVALENT CIRCUIT MODELING........................................................................ 48 4.1. Experimental Premise ............................................................................................. 48 4.2. Experimental Setup ................................................................................................. 48 4.3. Data Analysis.......................................................................................................... 51 4.4. Chapter Summary ................................................................................................... 61 iv 5. PHENOMENOLOGICAL EQUIVALENT CIRCUIT MODELING OF HYBRID CAPACITORS .............................................................................................................. 62 5.1. Experimental Premise ............................................................................................. 62 5.2. Experimental Procedure .......................................................................................... 63 5.3. Analysis of PECM and Performance Results ........................................................... 70 5.4. Chapter Summary ................................................................................................... 75 6. APPLICATION OF PECM OF LEAD-ACID BATTERIES FOR PV AND SMART GRID APPLICATIONS ................................................................................................ 76 6.1. Experimental Premise ............................................................................................. 76 6.2 Analysis of PECM ................................................................................................... 84 6.3. Chapter Summary ................................................................................................... 90 7. INVESTIGATION OF LARGE CURRENT BATTERY/CAPACITOR DIRECT COUPLING FOR SIMPLE POWER APPLICATIONS ................................................. 91 7.1. Experimental Premise ............................................................................................. 91 7.2. Analysis of Hybridized System ............................................................................... 92 7.3 Chapter Summary .................................................................................................. 101 REFERENCES.................................................................................................................. 102 BIOGRAPHICAL SKETCH ............................................................................................. 108 v LIST OF TABLES Table 3.1: A list of parameters obtained from fitting EISs at different SOCs ............................. 39 Table 3.2: Fitting equations derived from Table 3.1 parameters. ................................................ 40 Table 4.1: Deconstructed cell measurements ............................................................................. 49 Table 4.2: RS information .......................................................................................................... 53 Table 4.3: Charge transfer resistance and resulting exchange current density ............................. 55 Table 4.4: Diffusion parameters ................................................................................................ 57 Table 4.5: Double layer capacitance and surface area ................................................................ 60 Table 5.1: Capacitor specifications ............................................................................................ 64 Table 5.2: Phemenological equivalent circuit elements per voltage............................................ 68 Table 6.1: Battery parameters .................................................................................................... 77 Table 6.2: Cell capacity ............................................................................................................. 78 Table 6.3: PECM elements per SOC at 23°C ............................................................................. 82 Table 6.4: PECM elements per temperature at 100% SOC......................................................... 82 Table 6.5: Ragone plot data ....................................................................................................... 89 Table 7.1: PECM parameters for BrenTronics® LiFePO4 battery .............................................. 92 Table 7.2: Fitting of optimization curves of Figures 7.7 and 7.8 .............................................. 101 vi LIST OF FIGURES Figure 1.1: Daniell cell at rest. .....................................................................................................2 Figure 1.2: Daniell cell under load conditions..............................................................................3