Exploring Globally Used Antiurolithiatic Plants of M to R Families
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Zizyphus Lotus (L.)” Fruit Crude Extract and Fractions
molecules Article Physico-Chemical and Phytochemical Characterization of Moroccan Wild Jujube “Zizyphus lotus (L.)” Fruit Crude Extract and Fractions Hafssa El Cadi 1 , Hajar EL Bouzidi 1,2, Ginane Selama 2, Asmae El Cadi 3, Btissam Ramdan 4, Yassine Oulad El Majdoub 5, Filippo Alibrando 6, Paola Dugo 5,6, Luigi Mondello 5,6,7,8 , Asmae Fakih Lanjri 1, Jamal Brigui 1 and Francesco Cacciola 9,* 1 Laboratory of Valorization of Resources and Chemical Engineering, Department of Chemistry, Abdelmalek Essaadi University, 90000 Tangier, Morocco; [email protected] (H.E.C.); [email protected] (H.E.B.); fl[email protected] (A.F.L.); [email protected] (J.B.) 2 Laboratory of Biochemistry and Molecular Genetics, Abdelmalek Essaadi University, 90000 Tangier, Morocco; [email protected] 3 Department of Chemistry, Laboratory of Physico-Chemistry of Materials, Natural Substances and Environment, Abdelmalek Essaadi University, 90000 Tangier, Morocco; [email protected] 4 Laboratory of Biotechnology and valorization of natural resources, Department of Biology, Faculty of Science, University Ibn Zohr, 80000 Agadir, Morocco; [email protected] 5 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; [email protected] (Y.O.E.M.); [email protected] (P.D.); [email protected] (L.M.) 6 Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; fi[email protected] -
Notes on Parnassia Kumaonica Nekr. (Parnassiaceae) in Nepal
Bull. Natn. Sci. Mus., Tokyo, Ser. B, 32(2), pp. 103–107, June 22, 2006 Notes on Parnassia kumaonica Nekr. (Parnassiaceae) in Nepal Shinobu Akiyama1 and Mahendra N. Subedi2 1 Department of Botany, National Science Museum, Tokyo, 4–1–1 Amakubo, Tsukuba, Ibaraki, 305–0005 Japan E-mail: [email protected] 2 Department of Plant Resources, Ministry of Forest and Soil Conservation, G. P. O. Box 9446, Kathmandu, Nepal Abstract An additional description of Parnassia kumaonica Nekr. is given with sketches. This species is characterized by the petals with abruptly narrowed claw-like base. The key to distinguish from the resembling species in Nepal is also given. Key words : Himalaya, Mustang, Nepal, Parnassia, Sino-Himalayan region The flora and vegetation of Mustang District, sia is identified as P. kumaonica. In the original Central Nepal are remarkably different from description of P. kumaonica the size of sepals, other districts in Nepal (Stainton 1972). Since petals, stamens, and staminodes is not men- 2000 research teams have been dispatched to the tioned, though it has rough sketches of a plant, a lower and upper Mustang to study the flora sepal, petals, and staminodes without scale (Iokawa 2001, Noshiro and Amano 2002, (Nekrassova 1927). Miyamoto and Ikeda 2003). A Parnassia was Parnassia kumaonica is hardly known in collected during these field researches. Nepal. Hara (1955) mentioned several features The genus Parnassia is diversified in the Sino- including the size of style (as 2 mm long) based Himalayan floristic region. Hara (1979) recog- on the specimen from Thaple Himal (4600 m), nized six species in Nepal. -
Parnassia Section Saxifragastrum (Parnassiaceae) from China
Ann. Bot. Fennici 46: 559–565 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 18 December 2009 © Finnish Zoological and Botanical Publishing Board 2009 Taxonomic notes on Parnassia section Saxifragastrum (Parnassiaceae) from China Ding Wu1,2, Lian-Ming Gao1,3,* & Michael Möller4 1) Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China (*corresponding author’s e-mail: [email protected]) 2) Jingdezhen College, Jingdezhen 333000, China 3) Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China 4) Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK Received 28 July 2008, revised version received 15 Dec. 2008, accepted 23 Dec. 2008 Wu, D., Gao, L. M. & Möller, M. 2009: Taxonomic notes on Parnassia section Saxifragastrum (Par- nassiaceae) from China. — Ann. Bot. Fennici 46: 559–565. Morphological variation within and among populations of closely related taxa of Parnassia sect. Saxifragastrum from China was studied based on literature, specimen examinations and field survey. Parnassia angustipetala T.C. Ku, P. yulongshanensis T.C. Ku, P. longipetaloides J.T. Pan, and P. yanyuanensis T.C. Ku were reduced to synonymy of P. yunnanensis Franchet. Parnassia humilis T.C. Ku is different from P. yunnanensis, and is proposed as a new synonym of P. trinervis Drude. The geographic distribution and illustrations of P. yunnanensis and P. trinervis are also presented. Key words: distribution, morphology, Parnassia sect. Saxifragastrum, taxonomy Introduction ova (1927), Evans (1921) and Handel-Mazzetti (1941). Engler (1930) followed Drude’s (1875) The genus Parnassia, consisting of about 50 spe- classification, but added a fifth section. -
Comparative Morphology of Leaf Epidermis in Parnassia
植 物 分 类 学 报 43(3): 210–224(2005) doi:10.1360/aps040099 Acta Phytotaxonomica Sinica http://www.plantsystematics.com Comparative morphology of leaf epidermis in Parnassia (Parnassiaceae) from China 1, 2WU Ding 1WANG Hong 1,2LU Jin-Mei 1LI De-Zhu* 1 (Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, China) 2 (Graduate School of the Chinese Academy of Sciences, Beijing 100039, China) Abstract Epidermal characters of mature leaves in 30 species representing all the nine sections of Parnassia (Parnassiaceae) were investigated under both light microscope (LM) and scanning electron microscope (SEM). The stomata were anomocytic and existed on abaxial epidermis in all the species examined, and on the adaxial epidermis in some species. The leaf epidermal cells were usually irregular or polygonal in shape. The patterns of anticlinal walls were slightly straight, repand or sinuate. Under SEM, the inner margin of the outer stomatal rim was nearly smooth, sinuolate or sinuous, and the cuticular membrane of the leaf epidermis was striate, sometimes striate to wrinkled, occasionally granular or foveolate. Stomatal and other epidermal features in Parnassia appear to be constant within species, and thus can be used for distinguishing some species. Leaf epidermal features show that Parnassia is a quite natural genus. The previous reports that the stomata are anomocytic and occur only abaxially in Parnassia, yet occur both adaxially and abaxially in Lepuropetalon are not confirmed by this study, which, based on more extensive study, has shown that some species of Parnassia also exhibited stomata on both adaxial and abaxial sides. -
Relationship Between Seed Size and Related Functional Traits in North Saharan Acacia Woodlands
Plant Ecology and Evolution 151 (1): 87–95, 2018 https://doi.org/10.5091/plecevo.2018.1368 REGULAR PAPER Relationship between seed size and related functional traits in North Saharan Acacia woodlands Teresa Navarro1,*, Jalal El Oualidi2 & Mohammed Sghir Taleb2 1Departamento de Biología Vegetal, Universidad de Málaga, Apdo. 59., 29080 Málaga, Spain 2Département de Botanique et d’Ecologie Végétale, Institut Scientifique, Université Mohammed V, B.P. 703, Agdal, Rabat 10106, Morocco *Author for correspondence: [email protected] Background and aims – North Saharan Acacia woodland is a fragile ecosystem altered by desertification and human activities. Little research has been conducted on the ecology of North Saharan Acacia woodland species. Seed size is a key trait to determine germination success, survival rate and establishment of Acacia woodland species under desert constraints. Methods – We analysed seed-size relationships in 42 selected woody plants in four different types of Acacia woodland vegetation which correspond to 26 plant species. We examined the correlation among seed size, fruit size, plant height, leaf size and flowering time and we tested seed size and fruit size variation among growth forms, dispersal modes and mechanisms to prevent dispersal. Key results – Close relationships were found between seed size and fruit size (r = 0. 77**), between fruit size and plant height (r = 0.51**) and between seed size and flowering duration (r = -0.46*) and a weak positive relationship was found between fruit and leaf size. Species with restricted spatial dispersal tended to have smaller seeds and fruits compared to those with well-developed spatial dispersal. Species which disperse and germinate throughout the year tended to have large diaspores, whereas species with seasonal germination tended to have small diaspores. -
Antimicrobial Activity of Fruits Extracts of the Wild Jujube "Ziziphus Lotus (L.) Desf
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 1521 ISSN 2229-5518 Antimicrobial activity of fruits extracts of the wild jujube "Ziziphus Lotus (L.) Desf. Rsaissi.N (1), EL KAMILI(1), B. Bencharki (1), L. Hillali(1) & M. Bouhache (2) Abstract— In Morocco, Wild jujube "Ziziphus Lotus (L.) Desf." is a very common fruit shrub in arid and semi-arid region. Fruits of this species are traditionally used for treatment of many diseases. The objective of this study is to evaluate in vitro the biological activity of the extracts of the fruits of this shrub, extracted successively by maceration with different organic solvents of increasing polarity (ether, dichloromethane and methanol), on four Gram negative and four Gram positive bacteria species and four species of filamentous fungi. All extracts showed an activity on different studied bac- terial species. At the concentration of 4000 µg/disk, the etheric and methanolic extracts were the most active by inducing growth inhibition diameters between 11 and 20 mm of Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Klebsiella pneumoniae, Salmonella Typhi, Escherichia coli, Enter- ococcus faecalis and Pseudomonas aeruginosa. At the concentration of 20 mg/ml, these extracts showed an interesting activity on the four fungi spe- cies: Fusarium culmorum, Aspegillus ochraceus, Penicillium italicum, Rhizomucor sp. The inhibition rates ranged from 31 to 85% and 17 to 76% at the second and the fifth day of incubation, respectively. Based on chemical analyses, the fruits of wild jujube contain phenols, flavonoids and tannins, which explain their high antimicrobial activity. Indeed, a strong correlation was noted between the concentrations of these components in the fruits ex- tracts and their antimicrobial activity. -
Native and Non-Native Species for Dryland Afforestation: Bridging Ecosystem Integrity and Livelihood Support
Annals of Forest Science (2019) 76: 114 https://doi.org/10.1007/s13595-019-0903-2 REVIEW PAPER Native and non-native species for dryland afforestation: bridging ecosystem integrity and livelihood support Orna Reisman-Berman1,2 & Tamar Keasar3 & Noemi Tel-Zur1 Received: 23 December 2018 /Accepted: 18 November 2019 /Published online: 11December 2019 # The Author(s) 2019 Abstract & Key message We propose a silvicultural-ecological, participatory-based, conceptual framework to optimize the socioeconomic- ecological services provided by dryland afforestation, i.e. addressing the limited resources in arid areas while minimizing the harm to the environment. The framework applies the following criteria to select multifunctional tree species: (a) drought resistance, (b) minimal disruption of ecosystem integrity, and (c) maximization of ecosystem services, including supporting community livelihoods. & Context Dryland afforestation projects frequently aim to combine multiple ecological and economic benefits. Nevertheless, plant species for such projects are selected mainly to withstand aridity, while other important characteristics are neglected. This approach has resulted in planted forests that are drought-resistant, yet harm the natural ecosystem and provide inadequate ecosystem services for humans. & Aims We suggest a comprehensive framework for species selection for dryland afforestation that would increase, rather than disrupt, ecological and socio-economic services. & Methods To formulate a synthesis, we review and analyze past and current afforestation policies and the socio-ecological crises ensuing from them. & Results To increase afforestation services and to support human-community needs, both native and non-native woody species should be considered. The framework suggests experimental testing of candidate species for their compliance with the suggested species selection criteria. -
(Ranunculaceae) Petals
ARTICLE https://doi.org/10.1038/s41467-020-15658-2 OPEN The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals Hong Liao1,3, Xuehao Fu 1,2,3, Huiqi Zhao1,2,3, Jie Cheng 1,2, Rui Zhang1, Xu Yao 1, Xiaoshan Duan1, ✉ Hongyan Shan1 & Hongzhi Kong 1,2 1234567890():,; Pseudonectaries, or false nectaries, the glistening structures that resemble nectaries or nectar droplets but do not secrete nectar, show considerable diversity and play important roles in plant-animal interactions. The morphological nature, optical features, molecular underpinnings and ecological functions of pseudonectaries, however, remain largely unclear. Here, we show that pseudonectaries of Nigella damascena (Ranunculaceae) are tiny, regional protrusions covered by tightly arranged, non-secretory polygonal epidermal cells with flat, smooth and reflective surface, and are clearly visible even under ultraviolet light and bee vision. We also show that genes associated with cell division, chloroplast development and wax formation are preferably expressed in pseudonectaries. Specifically, NidaYABBY5,an abaxial gene with ectopic expression in pseudonectaries, is indispensable for pseudonectary development: knockdown of it led to complete losses of pseudonectaries. Notably, when flowers without pseudonectaries were arrayed beside those with pseudonectaries, clear differences were observed in the visiting frequency, probing time and visiting behavior of pollinators (i.e., honey bees), suggesting that pseudonectaries serve as both visual attractants and nectar guides. 1 State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China. 2 University of Chinese Academy of Sciences, 100049 Beijing, China. -
(Ennab) of the Middle East, Food and Medicine
Hasan et al. UJAHM 2014, 02 (06): Page 7-11 ISSN 2347 -2375 UNIQUE JOURNAL OF AYURVEDIC AND HERBAL MEDICINES Available online: www.ujconline.net Review Article ZIZIPHUS JUJUBE (ENNAB ) OF THE MIDDLE EAST, FOOD AND MEDICINE Hasan NM 1*, AlSorkhy MA 1 and Al Battah FF 2 1Department of Basic sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia 2Department of Science and Arts, Arab American University, Jenin, Palestine Received 29-09-2014; Revised 25-10-2014; Accepted 21-11-2014 *Corresponding Author : Hasan NM Department of Basic sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia ABSTRACT Ennab (jujube) is a plant of great nutritional and medicinal value that grows readily in many countries worldwide. Despite its great nutritional and medicinal value it has been noticed that it is not commonly known to the public in some Middle Eastern countries. Here we introduce this plant to the scientific community and provide an updated review of its nutritional and medicinal importance in order to promote its cultivation, a step towards improving the health and welfare of individuals and in purpose of drawing scientific focus to this underutilized valuable plant. Keywords: Ziziphus jujube , Ennab, Medicinal benefits, Nutrition, Middle East. INTRODUCTION secondary metabolites such as alkaloids, flavonoids, terpenoids, saponin, pectin, triterpenoic acids and lipids (i.e. The common jujube (Zizyphus Jujube) is a plant that is native Jujuboside (saponin) isolated from jujube is reported to have to Asia and Southern Europe. It is called Ennab (Arabic) or hemolytic, sedative, anxiolytic and sweetness inhibiting Annab (Persian) and is very common in some Middle Eastern properties 6. -
Lesson No. 23 Jujube (Sidr) (Ber)
Lesson no. 23 Jujube (sidr) (Ber) Jujube tree is very famous for its fruits which is very nutritive & full of health benefits; all parts of the tree has medicinal properties & health benefits, it is cheap, easy available all season; can be eaten by all age; its fruit is eaten fresh, dried, roasted, its jam, pickle, vinegar, oil etc are prepared & used. It is of many types in different countries depending on the climate, soil, cultivation, season etc. It is of many different shapes & taste, but all are beneficial for health. It is mentioned in Quran at 3 verses detail is given below; also mentioned in books of Hadith as a plant of it will be present in Jannah to which will have no thorns & fruits will be present in place of thorns, & it will have different taste & colours; in other Hadith it is mentioned that there is no comparison of its tree as its has benefits; in one Hadith it is mentioned that Adam (a.s) ate Sidr (jujube) it as the first fruit on earth; in Hadith it mentioned to bath the death body with its boiled water & also it was advise to a new Muslim to bath with its water. Also Lote-Tree of the Utmost Farthest Boundary") is a large" ;(ﺳِ ـدْرَة اﻟْـﻣُـﻧْـﺗَـﮭَﻰ) :The Sidraṫ al-Munṫahā (Arabic enigmatic lote tree or Sidr tree that marks the end of the seventh heaven, the boundary which no creation can pass, according to Islamic beliefs. During the Isra and Mi'raj, Prophet Muhammad (s.a.w), being the only one allowed, traveled with the archangel Gabriel to the tree (where the angel stopped) beyond which it is said that Allah (s.t) assigned the five daily prayers. -
Ethnobotanical Review of Wild Edible Plants in Spain
Blackwell Publishing LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2006? 2006 View metadata, citation and similar papers1521 at core.ac.uk brought to you by CORE 2771 Original Article provided by Digital.CSIC EDIBLE WILD PLANTS IN SPAIN J. TARDÍO ET AL Botanical Journal of the Linnean Society, 2006, 152, 27–71. With 2 figures Ethnobotanical review of wild edible plants in Spain JAVIER TARDÍO1*, MANUEL PARDO-DE-SANTAYANA2† and RAMÓN MORALES2 1Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca El Encín, Apdo. 127, E-28800 Alcalá de Henares, Madrid, Spain 2Real Jardín Botánico, CSIC, Plaza de Murillo 2, E-28014 Madrid, Spain Received October 2005; accepted for publication March 2006 This paper compiles and evaluates the ethnobotanical data currently available on wild plants traditionally used for human consumption in Spain. Forty-six ethnobotanical and ethnographical sources from Spain were reviewed, together with some original unpublished field data from several Spanish provinces. A total of 419 plant species belonging to 67 families was recorded. A list of species, plant parts used, localization and method of consumption, and harvesting time is presented. Of the seven different food categories considered, green vegetables were the largest group, followed by plants used to prepare beverages, wild fruits, and plants used for seasoning, sweets, preservatives, and other uses. Important species according to the number of reports include: Foeniculum vulgare, Rorippa nasturtium-aquaticum, Origanum vulgare, Rubus ulmifolius, Silene vulgaris, Asparagus acutifolius, and Scolymus hispanicus. We studied data on the botanical families to which the plants in the different categories belonged, over- lapping between groups and distribution of uses of the different species. -
Saxifragaceae
Flora of China 8: 269–452. 2001. SAXIFRAGACEAE 虎耳草科 hu er cao ke Pan Jintang (潘锦堂)1, Gu Cuizhi (谷粹芝 Ku Tsue-chih)2, Huang Shumei (黄淑美 Hwang Shu-mei)3, Wei Zhaofen (卫兆芬 Wei Chao-fen)4, Jin Shuying (靳淑英)5, Lu Lingdi (陆玲娣 Lu Ling-ti)6; Shinobu Akiyama7, Crinan Alexander8, Bruce Bartholomew9, James Cullen10, Richard J. Gornall11, Ulla-Maj Hultgård12, Hideaki Ohba13, Douglas E. Soltis14 Herbs or shrubs, rarely trees or vines. Leaves simple or compound, usually alternate or opposite, usually exstipulate. Flowers usually in cymes, panicles, or racemes, rarely solitary, usually bisexual, rarely unisexual, hypogynous or ± epigynous, rarely perigynous, usually biperianthial, rarely monochlamydeous, actinomorphic, rarely zygomorphic, 4- or 5(–10)-merous. Sepals sometimes petal-like. Petals usually free, sometimes absent. Stamens (4 or)5–10 or many; filaments free; anthers 2-loculed; staminodes often present. Carpels 2, rarely 3–5(–10), usually ± connate; ovary superior or semi-inferior to inferior, 2- or 3–5(–10)-loculed with axile placentation, or 1-loculed with parietal placentation, rarely with apical placentation; ovules usually many, 2- to many seriate, crassinucellate or tenuinucellate, sometimes with transitional forms; integument 1- or 2-seriate; styles free or ± connate. Fruit a capsule or berry, rarely a follicle or drupe. Seeds albuminous, rarely not so; albumen of cellular type, rarely of nuclear type; embryo small. About 80 genera and 1200 species: worldwide; 29 genera (two endemic), and 545 species (354 endemic, seven introduced) in China. During the past several years, cladistic analyses of morphological, chemical, and DNA data have made it clear that the recognition of the Saxifragaceae sensu lato (Engler, Nat.