Sporulation and Germination in Clostridial Pathogens AIMEE SHEN,1 ADRIANNE N

Total Page:16

File Type:pdf, Size:1020Kb

Sporulation and Germination in Clostridial Pathogens AIMEE SHEN,1 ADRIANNE N Sporulation and Germination in Clostridial Pathogens AIMEE SHEN,1 ADRIANNE N. EDWARDS,2 MAHFUZUR R. SARKER,3,4 and DANIEL PAREDES-SABJA5 1Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA 2Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 3Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR; 4Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 5Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile ABSTRACT As obligate anaerobes, clostridial pathogens IMPORTANCE OF SPORES TO depend on their metabolically dormant, oxygen-tolerant spore CLOSTRIDIAL PATHOGENESIS form to transmit disease. However, the molecular mechanisms Disease transmission by clostridial pathogens depends by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly on their ability to form aerotolerant, metabolically understood. While sporulation and germination have been well dormant spores before exiting their hosts (6). Since characterized in Bacillus subtilis and Bacillus anthracis, striking spores are highly resistant to extreme temperature and differences in the regulation of these processes have been pressure changes, radiation, enzymatic digestion, and observed between the bacilli and the clostridia, with even some oxidizing agents (7), they can persist for long periods of conserved proteins exhibiting differences in their requirements time and serve as environmental reservoirs for these and functions. Here, we review our current understanding of fi organisms (8). Spores from C. perfringens, C. botuli- how clostridial pathogens, speci cally Clostridium perfringens, fi Clostridium botulinum, and Clostridioides difficile, induce num, and C. dif cile can be isolated from diverse sporulation in response to environmental cues, assemble environments, including animal gastrointestinal tracts resistant spores, and germinate metabolically dormant spores and carcasses, wastewater, lawns, hospital rooms, and in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens. Received: 15 January 2018, Accepted: 11 April 2018, Published: 19 December 2019 Editors: Vincent A. Fischetti, The Rockefeller University, New York, NY; Richard P. Novick, Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; Joseph J. Ferretti, Department Notably, different mechanisms exist between these of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; Daniel A. Portnoy, Department organisms for forming and germinating spores. Some of Molecular and Cellular Microbiology, University of California, of these differences reflect phylogenetic differences be- Berkeley, Berkeley, CA; Miriam Braunstein, Department of Microbiology and Immunology, University of North Carolina-Chapel tween the Clostridiaceae (represented by C. perfringens Hill, Chapel Hill, NC, and Julian I. Rood, Infection and Immunity and C. botulinum) and the Peptostreptococcaceae (rep- Program, Monash Biomedicine Discovery Institute, Monash resented by C. difficile)(1). Other differences reflect University, Melbourne, Australia genetic diversity within each species (2–4). C. botulinum Citation: Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. 2019. Sporulation and germination in clostridial pathogens. Microbiol is the most divergent, being divided into four metabolic Spectrum 7 (6):GPP3-0017-2018. doi:10.1128/microbiolspec.GPP3- groups (groups 1 to IV) that effectively represent dif- 0017-2018. ferent species despite their shared production of botuli- Correspondence: Aimee Shen, [email protected] num toxin (5). © 2019 American Society for Microbiology. All rights reserved. ASMscience.org/MicrobiolSpectrum 1 Downloaded from www.asmscience.org by IP: 205.193.94.40 On: Wed, 22 Jan 2020 15:45:37 Shen et al. soil (8). Infections by these pathogens typically are ini- specific bile acids sensed in the mammalian gut; the tiated upon ingestion of spores, although C. perfringens resulting vegetative cells produced secrete glucosylating can also enter the body via contaminating wounds. toxins that are the primary cause of disease symptoms Upon sensing small-molecule germinants, spores from (20). Notably, antibiotic exposure sensitizes individuals these pathogens germinate and outgrow into toxin- to antibiotic-resistant C. difficile by removing the colo- secreting vegetative cells. nization resistance conferred by our gut microflora (21). Spores are critical to this infection process not only C. perfringens because they are essential for transmitting C. difficile C. perfringens causes two major human diseases: food infections (6) but also because they are inert to anti- poisoning and gas gangrene (also known as clostridial biotics and resist many commonly used disinfectants in myonecrosis [9]). Clostridial myonecrosis occurs when health care settings (22, 23). Accordingly, spores are spores from the soil enter muscle tissue, typically through easily detected in health care-associated environments a wound, while food poisoning arises when spores or (24) in addition to numerous other sites (8). vegetative cells in contaminated food are ingested. Un- like most clostridial pathogens, C. perfringens’ vegetative OVERVIEW OF SPORE FORMATION form can initiate infection when present at sufficiently high levels to survive passage through the stomach. The first morphological stage of sporulation is the for- C. perfringens causes disease by secreting a number of mation of a polar septum, which generates two mor- toxins; C. perfringens strains are subdivided into toxi- phologically distinct, but genetically identical, cells (Fig. 1) genic types A to E based on the combination of the (25). The larger mother cell engulfs the smaller forespore alpha-, beta-, epsilon-, and iota-toxins they produce. cell, leaving the forespore within the mother cell cytosol C. perfringens spores can be remarkably heat resis- surrounded by two membranes. A thick layer of modified tant, with some type A strains surviving boiling for >1 h peptidoglycan known as the cortex forms between the (10, 11). Spores from food-poisoning isolates exhibit two membranes, conferring spores with heat and ethanol greater resistance to heat (∼60-fold), cold, and oxidizing resistance (26, 27). A series of proteinaceous layers known agents (12, 13) than nonfoodborne isolates, suggesting as the coat assembles around the outer forespore mem- that their resistance properties facilitate their survival in brane and protects the spore against enzymatic and oxi- undercooked or improperly held food (10). dative insults. In C. difficile, an additional layer known as the exposporium assembles on the coat, but this layer is C. botulinum not present in all spore-forming organisms. C. botulinum causes a flaccid paralysis known as botu- The mother cell and forespore also coordinately pre- lism through the production of the potent neurotoxin, pare the forespore for dormancy. The mother cell pro- botulinum toxin (BoNT). C. botulinum strains are sub- duces large amounts of dipicolinic acid (pyridine-2,6- divided based on their production of one or more of dicarboxylic acid) complexed with calcium (Ca-DPA), seven BoNT types (A to G) (14, 15). Botulism typically which it pumps into the developing forespore in ex- results from the ingestion of preformed BoNT in con- change for water (28). The resulting partially dehydrated taminated foods, but ingestion of C. botulinum spores forespore cytosol prevents metabolism. The forespore in contaminated foods such as unpasteurized honey can produces large amounts of small acid-soluble proteins cause infant paralysis, particularly in those <1 year old (SASPs), which coat the chromosome, prevent tran- (16). Even in cases of botulism intoxication, the spore scription, and protect against DNA damage (26, 28). form is critical for contaminating food, where incom- Once the forespore completes its maturation, the mother plete sterilization or processing, such as during home cell induces lysis and releases the metabolically dormant canning, can create anaerobic environments that allow spore into the environment. C. botulinum spores to germinate and form toxin- producing vegetative cells that subsequently intoxicate SPORULATION INITIATION IN the food (17). CLOSTRIDIAL PATHOGENS C. difficile The decision to initiate sporulation requires that vege- C. difficile is a leading cause of antibiotic-associated tative cells recognize specific environmental and nu- diarrhea and pseudomembranous colitis worldwide (18, tritional signals and assimilate these cues into a robust 19). C. difficile-associated disease occurs when spores, response. All sporulating Firmicutes use the conserved ingested by susceptible hosts, germinate in response to transcriptional regulator, Spo0A, as a key checkpoint 2 ASMscience.org/MicrobiolSpectrum Downloaded from www.asmscience.org by IP: 205.193.94.40 On: Wed, 22 Jan 2020 15:45:37 Sporulation and Germination in Clostridial Pathogens FIGURE 1 Lifecycle of endospore formers. (A) Sporulation. Upon sensing certain envi- ronmental conditions, endospore formers activate Spo0A and initiate sporulation. The first morphological event is the formation of a polar septum, which creates a larger mother cell and smaller
Recommended publications
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Effect of Ph and Temperature on Microbial Community Structure And
    Calicioglu et al. Biotechnol Biofuels (2018) 11:275 https://doi.org/10.1186/s13068-018-1278-6 Biotechnology for Biofuels RESEARCH Open Access Efect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed Ozgul Calicioglu1, Michael J. Shreve1, Tom L. Richard2 and Rachel A. Brennan1* Abstract Background: Duckweeds (Lemnaceae) are efcient aquatic plants for wastewater treatment due to their high nutri- ent-uptake capabilities and resilience to severe environmental conditions. Combined with their rapid growth rates, high starch, and low lignin contents, duckweeds have also gained popularity as a biofuel feedstock for thermochemi- cal conversion and alcohol fermentation. However, studies on the acidogenic anaerobic digestion of duckweed into carboxylic acids, another group of chemicals which are precursors of higher-value chemicals and biofuels, are lacking. In this study, a series of laboratory batch experiments were performed to determine the favorable operating condi- tions (i.e., temperature and pH) to maximize carboxylic acid production from wastewater-derived duckweed during acidogenic digestion. Batch reactors with 25 g/l solid loading were operated anaerobically for 21 days under meso- philic (35 °C) or thermophilic (55 °C) conditions at an acidic (5.3) or basic (9.2) pH. At the conclusion of the experiment, the dominant microbial communities under various operating conditions were assessed using high-throughput sequencing. Results: The highest duckweed–carboxylic acid conversion of 388 28 mg acetic acid equivalent per gram volatile solids was observed under mesophilic and basic conditions, with an± average production rate of 0.59 g/l/day. This result is comparable to those reported for acidogenic digestion of other organics such as food waste.
    [Show full text]
  • Analyzing the Early Stages of Clostridium Difficile Spore
    ANALYZING THE EARLY STAGES OF CLOSTRIDIUM DIFFICILE SPORE GERMINATION A Dissertation by MICHAEL FRANCIS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Joseph A. Sorg Committee Members, James L. Smith Matthew S. Sachs Paul D. Straight Head of Department, Thomas D. McKnight May 2017 Major Subject: Microbiology Copyright 2017 Michael Francis ABSTRACT Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow for improved experimental detail. One such advance was the generation of a mouse-model of C. difficile infection. This system was an important step forward in the analysis of the genetic requirements for colonization and infection. Equally important is understanding the differences that exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination, a process whereby a dormant spore returns to active, vegetative growth, is an important step during C. difficile colonization. Mice produce several different bile acids that are not found in humans (muricholic acids) that have the potential to impact C. difficile spore germination. In order to understand potential effects of these different bile acids on C. difficile physiology, we characterized their effects on C. difficile spore germination and growth of vegetative cells. We found that the mouse-derived muricholic acids affect germination similarly to a previously-described inhibitor of germination, chenodeoxycholic acid.
    [Show full text]
  • Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
    microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M.
    [Show full text]
  • Infective Endocarditis Caused by C. Sordellii: the First Case Report from India
    Published online: 2021-05-19 THIEME 74 C.Case sordellii Report in Endocarditis Chaudhry et al. Infective Endocarditis Caused by C. sordellii: The First Case Report from India Rama Chaudhry1 Tej Bahadur1 Tanu Sagar1 Sonu Kumari Agrawal1 Nazneen Arif1 Shiv K. Choudhary2 Nishant Verma1 1Department of Microbiology, All India Institute of Medical Address for correspondence Dr. Rama Chaudhry, MD, Department Sciences, New Delhi, India of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, 2Department of Cardiothoracic and Vascular Surgery, All India New Delhi 110029, India (e-mail: [email protected]). Institute of Medical Sciences, New Delhi, India J Lab Physicians 2021;13:74–76. Abstract Clostridium sordellii is a gram-positive anaerobic bacteria most commonly isolated Keywords from skin and soft tissue infection, penetrating injurious and intravenous drug abus- ► infective endocarditis ers. The exotoxins produced by the bacteria are associated with toxic shock syndrome. ► Clostridium sordellii We report here a first case of infective endocarditis due to C. sordellii from a female ► diagnosis patient with ventricular septal defect from India. Introduction admitted to the cardiothoracic vascular surgery ward of All India Institute of Medical Sciences (AIIMS), New Delhi, India Anaerobes are major components of the normal micro- with complaints of worsening shortness of breath and pal- bial flora present on human skin and mucosa. Infections pitations. Patient reported having an episode of IE 3 months due to anaerobic bacteria are common, but they are dif- back for which she had been admitted to AIIMS and was ficult to isolate from infected sites and are often over- discharged after treatment.
    [Show full text]
  • Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria
    pathogens Review Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria Michele Totaro, Beatrice Casini , Sara Profeti, Benedetta Tuvo, Gaetano Privitera and Angelo Baggiani * Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; [email protected] (M.T.); [email protected] (B.C.); [email protected] (S.P.); [email protected] (B.T.); [email protected] (G.P.) * Correspondence: [email protected]; Tel.: 050-221-3583; Fax: 050-221-3588 Received: 10 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: The emergence of multiresistant bacterial strains as agents of healthcare-related infection in hospitals has prompted a review of the control techniques, with an added emphasis on preventive measures, namely good clinical practices, antimicrobial stewardship, and appropriate environmental cleaning. The latter item is about the choice of an appropriate disinfectant as a critical role due to the difficulties often encountered in obtaining a complete eradication of environmental contaminations and reservoirs of pathogens. The present review is focused on the effectiveness of hydrogen peroxide vapor, among the new environmental disinfectants that have been adopted. The method is based on a critical review of the available literature on this topic Keywords: hydrogen peroxide vapor; multidrug-resistant bacteria; hospital disinfection 1. Introduction The disinfection of hospital surfaces is a complex operation aimed at reducing the pathogenic microorganism load. An ideal disinfectant must be safe for human health. It may have a good stability in the environment and may be free of toxic activity [1–4].
    [Show full text]
  • Significance of Donor Human Milk
    fmicb-09-01376 June 26, 2018 Time: 17:31 # 1 ORIGINAL RESEARCH published: 27 June 2018 doi: 10.3389/fmicb.2018.01376 Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk Anna Parra-Llorca1, María Gormaz1,2, Cristina Alcántara3, María Cernada1,2, Antonio Nuñez-Ramiro1,2, Máximo Vento1,2*† and Maria C. Collado3*† 1 Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain, 2 Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain, 3 Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain Preterm microbial colonization is affected by gestational age, antibiotic treatment, type of birth, but also by type of feeding. Breast milk has been acknowledged as the gold standard for human nutrition. In preterm infants breast milk has been associated with improved growth and cognitive development and a reduced risk of necrotizing enterocolitis and late onset sepsis. In the absence of their mother’s own milk (MOM), pasteurized donor human milk (DHM) could be the best available alternative due to its similarity to the former. However, little is known about the effect of DHM upon preterm Edited by: Sandra Torriani, microbiota and potential biological implications. Our objective was to determine the University of Verona, Italy impact of DHM upon preterm gut microbiota admitted in a referral neonatal intensive Reviewed by: care unit (NICU). A prospective observational cohort study in NICU of 69 neonates Carlotta De Filippo, <32 weeks of gestation and with a birth weight ≤1,500 g was conducted.
    [Show full text]
  • Production of Bio-Hydrogen from Dairy Wastewater Using Pretreated Landfill
    Journal of Bioscience and Bioengineering VOL. 127 No. 2, 150e159, 2019 www.elsevier.com/locate/jbiosc Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum Yee Meng Wong,1,2 Pau Loke Show,3 Ta Yeong Wu,4 Hui Yi Leong,3 Shaliza Ibrahim,5 and Joon Ching Juan1,2,* School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia,1 Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia,2 Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia,3 Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia,4 and Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia5 Received 26 February 2018; accepted 15 July 2018 Available online 15 September 2018 Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb’s free energy was estimated at L40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/ l, respectively.
    [Show full text]
  • Clostridium Amazonitimonense, Clostridium Me
    ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6].
    [Show full text]
  • Botulism Manual
    Preface This report, which updates handbooks issued in 1969, 1973, and 1979, reviews the epidemiology of botulism in the United States since 1899, the problems of clinical and laboratory diagnosis, and the current concepts of treatment. It was written in response to a need for a comprehensive and current working manual for epidemiologists, clinicians, and laboratory workers. We acknowledge the contributions in the preparation of this review of past and present physicians, veterinarians, and staff of the Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases (DBMD), National Center for Infectious Diseases (NCID). The excellent review of Drs. K.F. Meyer and B. Eddie, "Fifty Years of Botulism in the United States,"1 is the source of all statistical information for 1899-1949. Data for 1950-1996 are derived from outbreaks reported to CDC. Suggested citation Centers for Disease Control and Prevention: Botulism in the United States, 1899-1996. Handbook for Epidemiologists, Clinicians, and Laboratory Workers, Atlanta, GA. Centers for Disease Control and Prevention, 1998. 1 Meyer KF, Eddie B. Fifty years of botulism in the U.S. and Canada. George Williams Hooper Foundation, University of California, San Francisco, 1950. 1 Dedication This handbook is dedicated to Dr. Charles Hatheway (1932-1998), who served as Chief of the National Botulism Surveillance and Reference Laboratory at CDC from 1975 to 1997. Dr. Hatheway devoted his professional life to the study of botulism; his depth of knowledge and scientific integrity were known worldwide. He was a true humanitarian and served as mentor and friend to countless epidemiologists, research scientists, students, and laboratory workers.
    [Show full text]
  • Guide to Turning an RDP File Into a Data Set
    Guide to Turning an RDP File into a Data Set Berkley Shands, Patricio S. La Rosa, Elena Deych, William Shannon July 5, 2017 Below we will define the basic steps required to generate a data set from an RDP file 1. Take an RDP file such as this example: ;Root:1.0;Bacteria:1.0;Firmicutes:1.0;Bacilli:1.0;Bacillales:1.0;Staphylococcaceae:1.0; ;Root:1.0;Bacteria:1.0;Firmicutes:1.0;Bacilli:1.0;Lactobacillales:1.0;Carnobacteriaceae:0.8; ;Root:1.0;Bacteria:1.0;Bacteroidetes:1.0;Bacteroidia:1.0;Bacteroidales:1.0;Prevotellaceae:1.0; ;Root:1.0;Bacteria:1.0;Bacteroidetes:1.0;Bacteroidia:1.0;Bacteroidales:1.0;Prevotellaceae:1.0; ;Root:1.0;Bacteria:1.0;Bacteroidetes:1.0;Bacteroidia:1.0;Unclassified:0.5;Unclassified:0.5; 2. Take the first entry and seperate each level into its own row, while seper- ating levels by a period: Root, 1 Root.Bacteria, 1 Root.Bacteria.Firmicutes, 1 Root.Bacteria.Firmicutes.Bacilli, 1 Root.Bacteria.Firmicutes.Bacilli.Bacillales, 1 Root.Bacteria.Firmicutes.Bacilli.Bacillales.Staphylococcaceae, 1 3. Do the same with each following row, adding to the number at the end if it is the same: Root, 5 Root.Bacteria, 5 Root.Bacteria.Firmicutes, 2 Root.Bacteria.Firmicutes.Bacilli, 2 Root.Bacteria.Firmicutes.Bacilli.Bacillales, 1 Root.Bacteria.Firmicutes.Bacilli.Bacillales.Staphylococcaceae, 1 Root.Bacteria.Firmicutes.Bacilli.Lactobacillales, 1 Root.Bacteria.Firmicutes.Bacilli.Lactobacillales.Carnobacteriaceae, .8 Root.Bacteria.Bacteroidetes, 3 Root.Bacteria.Bacteroidetes.Bacteroidia, 3 Root.Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales, 2 Root.Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae, 2 Root.Bacteria.Bacteroidetes.Bacteroidia.Unclassified, .5 Root.Bacteria.Bacteroidetes.Bacteroidia.Unclassified.Unclassified, .5 4.
    [Show full text]
  • The Sialidase Nans Enhances Non-Tcsl Mediated Cytotoxicity of Clostridium Sordellii
    toxins Article The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii Milena M. Awad, Julie Singleton and Dena Lyras * Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia; [email protected] (M.M.A.); [email protected] (J.S.) * Correspondence: [email protected]; Tel.: +61-3-9902-9155 Academic Editors: Harald Genth, Michel R. Popoff and Holger Barth Received: 24 March 2016; Accepted: 7 June 2016; Published: 17 June 2016 Abstract: The clostridia produce an arsenal of toxins to facilitate their survival within the host environment. TcsL is one of two major toxins produced by Clostridium sordellii, a human and animal pathogen, and is essential for disease pathogenesis of this bacterium. C. sordellii produces many other toxins, but the role that they play in disease is not known, although previous work has suggested that the sialidase enzyme NanS may be involved in the characteristic leukemoid reaction that occurs during severe disease. In this study we investigated the role of NanS in C. sordellii disease pathogenesis. We constructed a nanS mutant and showed that NanS is the only sialidase produced from C. sordellii strain ATCC9714 since sialidase activity could not be detected from the nanS mutant. Complementation with the wild-type gene restored sialidase production to the nanS mutant strain. Cytotoxicity assays using sialidase-enriched culture supernatants applied to gut (Caco2), vaginal (VK2), and cervical cell lines (End1/E6E7 and Ect1/E6E7) showed that NanS was not cytotoxic to these cells. However, the cytotoxic capacity of a toxin-enriched supernatant to the vaginal and cervical cell lines was substantially enhanced in the presence of NanS.
    [Show full text]