Sporulation and Germination in Clostridial Pathogens AIMEE SHEN,1 ADRIANNE N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
Effect of Ph and Temperature on Microbial Community Structure And
Calicioglu et al. Biotechnol Biofuels (2018) 11:275 https://doi.org/10.1186/s13068-018-1278-6 Biotechnology for Biofuels RESEARCH Open Access Efect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed Ozgul Calicioglu1, Michael J. Shreve1, Tom L. Richard2 and Rachel A. Brennan1* Abstract Background: Duckweeds (Lemnaceae) are efcient aquatic plants for wastewater treatment due to their high nutri- ent-uptake capabilities and resilience to severe environmental conditions. Combined with their rapid growth rates, high starch, and low lignin contents, duckweeds have also gained popularity as a biofuel feedstock for thermochemi- cal conversion and alcohol fermentation. However, studies on the acidogenic anaerobic digestion of duckweed into carboxylic acids, another group of chemicals which are precursors of higher-value chemicals and biofuels, are lacking. In this study, a series of laboratory batch experiments were performed to determine the favorable operating condi- tions (i.e., temperature and pH) to maximize carboxylic acid production from wastewater-derived duckweed during acidogenic digestion. Batch reactors with 25 g/l solid loading were operated anaerobically for 21 days under meso- philic (35 °C) or thermophilic (55 °C) conditions at an acidic (5.3) or basic (9.2) pH. At the conclusion of the experiment, the dominant microbial communities under various operating conditions were assessed using high-throughput sequencing. Results: The highest duckweed–carboxylic acid conversion of 388 28 mg acetic acid equivalent per gram volatile solids was observed under mesophilic and basic conditions, with an± average production rate of 0.59 g/l/day. This result is comparable to those reported for acidogenic digestion of other organics such as food waste. -
Analyzing the Early Stages of Clostridium Difficile Spore
ANALYZING THE EARLY STAGES OF CLOSTRIDIUM DIFFICILE SPORE GERMINATION A Dissertation by MICHAEL FRANCIS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Joseph A. Sorg Committee Members, James L. Smith Matthew S. Sachs Paul D. Straight Head of Department, Thomas D. McKnight May 2017 Major Subject: Microbiology Copyright 2017 Michael Francis ABSTRACT Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow for improved experimental detail. One such advance was the generation of a mouse-model of C. difficile infection. This system was an important step forward in the analysis of the genetic requirements for colonization and infection. Equally important is understanding the differences that exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination, a process whereby a dormant spore returns to active, vegetative growth, is an important step during C. difficile colonization. Mice produce several different bile acids that are not found in humans (muricholic acids) that have the potential to impact C. difficile spore germination. In order to understand potential effects of these different bile acids on C. difficile physiology, we characterized their effects on C. difficile spore germination and growth of vegetative cells. We found that the mouse-derived muricholic acids affect germination similarly to a previously-described inhibitor of germination, chenodeoxycholic acid. -
Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M. -
Infective Endocarditis Caused by C. Sordellii: the First Case Report from India
Published online: 2021-05-19 THIEME 74 C.Case sordellii Report in Endocarditis Chaudhry et al. Infective Endocarditis Caused by C. sordellii: The First Case Report from India Rama Chaudhry1 Tej Bahadur1 Tanu Sagar1 Sonu Kumari Agrawal1 Nazneen Arif1 Shiv K. Choudhary2 Nishant Verma1 1Department of Microbiology, All India Institute of Medical Address for correspondence Dr. Rama Chaudhry, MD, Department Sciences, New Delhi, India of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, 2Department of Cardiothoracic and Vascular Surgery, All India New Delhi 110029, India (e-mail: [email protected]). Institute of Medical Sciences, New Delhi, India J Lab Physicians 2021;13:74–76. Abstract Clostridium sordellii is a gram-positive anaerobic bacteria most commonly isolated Keywords from skin and soft tissue infection, penetrating injurious and intravenous drug abus- ► infective endocarditis ers. The exotoxins produced by the bacteria are associated with toxic shock syndrome. ► Clostridium sordellii We report here a first case of infective endocarditis due to C. sordellii from a female ► diagnosis patient with ventricular septal defect from India. Introduction admitted to the cardiothoracic vascular surgery ward of All India Institute of Medical Sciences (AIIMS), New Delhi, India Anaerobes are major components of the normal micro- with complaints of worsening shortness of breath and pal- bial flora present on human skin and mucosa. Infections pitations. Patient reported having an episode of IE 3 months due to anaerobic bacteria are common, but they are dif- back for which she had been admitted to AIIMS and was ficult to isolate from infected sites and are often over- discharged after treatment. -
Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria
pathogens Review Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria Michele Totaro, Beatrice Casini , Sara Profeti, Benedetta Tuvo, Gaetano Privitera and Angelo Baggiani * Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy; [email protected] (M.T.); [email protected] (B.C.); [email protected] (S.P.); [email protected] (B.T.); [email protected] (G.P.) * Correspondence: [email protected]; Tel.: 050-221-3583; Fax: 050-221-3588 Received: 10 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: The emergence of multiresistant bacterial strains as agents of healthcare-related infection in hospitals has prompted a review of the control techniques, with an added emphasis on preventive measures, namely good clinical practices, antimicrobial stewardship, and appropriate environmental cleaning. The latter item is about the choice of an appropriate disinfectant as a critical role due to the difficulties often encountered in obtaining a complete eradication of environmental contaminations and reservoirs of pathogens. The present review is focused on the effectiveness of hydrogen peroxide vapor, among the new environmental disinfectants that have been adopted. The method is based on a critical review of the available literature on this topic Keywords: hydrogen peroxide vapor; multidrug-resistant bacteria; hospital disinfection 1. Introduction The disinfection of hospital surfaces is a complex operation aimed at reducing the pathogenic microorganism load. An ideal disinfectant must be safe for human health. It may have a good stability in the environment and may be free of toxic activity [1–4]. -
Significance of Donor Human Milk
fmicb-09-01376 June 26, 2018 Time: 17:31 # 1 ORIGINAL RESEARCH published: 27 June 2018 doi: 10.3389/fmicb.2018.01376 Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk Anna Parra-Llorca1, María Gormaz1,2, Cristina Alcántara3, María Cernada1,2, Antonio Nuñez-Ramiro1,2, Máximo Vento1,2*† and Maria C. Collado3*† 1 Neonatal Research Group, Health Research Institute La Fe, University and Polytechnic Hospital La Fe, Valencia, Spain, 2 Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain, 3 Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain Preterm microbial colonization is affected by gestational age, antibiotic treatment, type of birth, but also by type of feeding. Breast milk has been acknowledged as the gold standard for human nutrition. In preterm infants breast milk has been associated with improved growth and cognitive development and a reduced risk of necrotizing enterocolitis and late onset sepsis. In the absence of their mother’s own milk (MOM), pasteurized donor human milk (DHM) could be the best available alternative due to its similarity to the former. However, little is known about the effect of DHM upon preterm Edited by: Sandra Torriani, microbiota and potential biological implications. Our objective was to determine the University of Verona, Italy impact of DHM upon preterm gut microbiota admitted in a referral neonatal intensive Reviewed by: care unit (NICU). A prospective observational cohort study in NICU of 69 neonates Carlotta De Filippo, <32 weeks of gestation and with a birth weight ≤1,500 g was conducted. -
Production of Bio-Hydrogen from Dairy Wastewater Using Pretreated Landfill
Journal of Bioscience and Bioengineering VOL. 127 No. 2, 150e159, 2019 www.elsevier.com/locate/jbiosc Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum Yee Meng Wong,1,2 Pau Loke Show,3 Ta Yeong Wu,4 Hui Yi Leong,3 Shaliza Ibrahim,5 and Joon Ching Juan1,2,* School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia,1 Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia,2 Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia,3 Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia,4 and Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia5 Received 26 February 2018; accepted 15 July 2018 Available online 15 September 2018 Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb’s free energy was estimated at L40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/ l, respectively. -
Clostridium Amazonitimonense, Clostridium Me
ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6]. -
Botulism Manual
Preface This report, which updates handbooks issued in 1969, 1973, and 1979, reviews the epidemiology of botulism in the United States since 1899, the problems of clinical and laboratory diagnosis, and the current concepts of treatment. It was written in response to a need for a comprehensive and current working manual for epidemiologists, clinicians, and laboratory workers. We acknowledge the contributions in the preparation of this review of past and present physicians, veterinarians, and staff of the Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases (DBMD), National Center for Infectious Diseases (NCID). The excellent review of Drs. K.F. Meyer and B. Eddie, "Fifty Years of Botulism in the United States,"1 is the source of all statistical information for 1899-1949. Data for 1950-1996 are derived from outbreaks reported to CDC. Suggested citation Centers for Disease Control and Prevention: Botulism in the United States, 1899-1996. Handbook for Epidemiologists, Clinicians, and Laboratory Workers, Atlanta, GA. Centers for Disease Control and Prevention, 1998. 1 Meyer KF, Eddie B. Fifty years of botulism in the U.S. and Canada. George Williams Hooper Foundation, University of California, San Francisco, 1950. 1 Dedication This handbook is dedicated to Dr. Charles Hatheway (1932-1998), who served as Chief of the National Botulism Surveillance and Reference Laboratory at CDC from 1975 to 1997. Dr. Hatheway devoted his professional life to the study of botulism; his depth of knowledge and scientific integrity were known worldwide. He was a true humanitarian and served as mentor and friend to countless epidemiologists, research scientists, students, and laboratory workers. -
Guide to Turning an RDP File Into a Data Set
Guide to Turning an RDP File into a Data Set Berkley Shands, Patricio S. La Rosa, Elena Deych, William Shannon July 5, 2017 Below we will define the basic steps required to generate a data set from an RDP file 1. Take an RDP file such as this example: ;Root:1.0;Bacteria:1.0;Firmicutes:1.0;Bacilli:1.0;Bacillales:1.0;Staphylococcaceae:1.0; ;Root:1.0;Bacteria:1.0;Firmicutes:1.0;Bacilli:1.0;Lactobacillales:1.0;Carnobacteriaceae:0.8; ;Root:1.0;Bacteria:1.0;Bacteroidetes:1.0;Bacteroidia:1.0;Bacteroidales:1.0;Prevotellaceae:1.0; ;Root:1.0;Bacteria:1.0;Bacteroidetes:1.0;Bacteroidia:1.0;Bacteroidales:1.0;Prevotellaceae:1.0; ;Root:1.0;Bacteria:1.0;Bacteroidetes:1.0;Bacteroidia:1.0;Unclassified:0.5;Unclassified:0.5; 2. Take the first entry and seperate each level into its own row, while seper- ating levels by a period: Root, 1 Root.Bacteria, 1 Root.Bacteria.Firmicutes, 1 Root.Bacteria.Firmicutes.Bacilli, 1 Root.Bacteria.Firmicutes.Bacilli.Bacillales, 1 Root.Bacteria.Firmicutes.Bacilli.Bacillales.Staphylococcaceae, 1 3. Do the same with each following row, adding to the number at the end if it is the same: Root, 5 Root.Bacteria, 5 Root.Bacteria.Firmicutes, 2 Root.Bacteria.Firmicutes.Bacilli, 2 Root.Bacteria.Firmicutes.Bacilli.Bacillales, 1 Root.Bacteria.Firmicutes.Bacilli.Bacillales.Staphylococcaceae, 1 Root.Bacteria.Firmicutes.Bacilli.Lactobacillales, 1 Root.Bacteria.Firmicutes.Bacilli.Lactobacillales.Carnobacteriaceae, .8 Root.Bacteria.Bacteroidetes, 3 Root.Bacteria.Bacteroidetes.Bacteroidia, 3 Root.Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales, 2 Root.Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae, 2 Root.Bacteria.Bacteroidetes.Bacteroidia.Unclassified, .5 Root.Bacteria.Bacteroidetes.Bacteroidia.Unclassified.Unclassified, .5 4. -
The Sialidase Nans Enhances Non-Tcsl Mediated Cytotoxicity of Clostridium Sordellii
toxins Article The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii Milena M. Awad, Julie Singleton and Dena Lyras * Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia; [email protected] (M.M.A.); [email protected] (J.S.) * Correspondence: [email protected]; Tel.: +61-3-9902-9155 Academic Editors: Harald Genth, Michel R. Popoff and Holger Barth Received: 24 March 2016; Accepted: 7 June 2016; Published: 17 June 2016 Abstract: The clostridia produce an arsenal of toxins to facilitate their survival within the host environment. TcsL is one of two major toxins produced by Clostridium sordellii, a human and animal pathogen, and is essential for disease pathogenesis of this bacterium. C. sordellii produces many other toxins, but the role that they play in disease is not known, although previous work has suggested that the sialidase enzyme NanS may be involved in the characteristic leukemoid reaction that occurs during severe disease. In this study we investigated the role of NanS in C. sordellii disease pathogenesis. We constructed a nanS mutant and showed that NanS is the only sialidase produced from C. sordellii strain ATCC9714 since sialidase activity could not be detected from the nanS mutant. Complementation with the wild-type gene restored sialidase production to the nanS mutant strain. Cytotoxicity assays using sialidase-enriched culture supernatants applied to gut (Caco2), vaginal (VK2), and cervical cell lines (End1/E6E7 and Ect1/E6E7) showed that NanS was not cytotoxic to these cells. However, the cytotoxic capacity of a toxin-enriched supernatant to the vaginal and cervical cell lines was substantially enhanced in the presence of NanS.