Crassostrea Virginica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability
Portland State University PDXScholar Environmental Science and Management Datasets Environmental Science and Management 7-2019 Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability Britta Baechler Portland State University, [email protected] Elise F. Granek Portland State University, [email protected] Matthew V. Hunter Oregon Department of Fish and Wildlife Kathleen E. Conn United States Geological Survey Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_data Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, and the Environmental Monitoring Commons Let us know how access to this document benefits ou.y Recommended Citation Baechler, Britta; Granek, Elise F.; Hunter, Matthew V.; and Conn, Kathleen E., "Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability" (2019). [Dataset]. https://doi.org/10.15760/esm-data.1 This Dataset is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Datasets by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Metadata template1 for datasets of L&O-Letters articles Table 1. Description of the fields needed to describe the creation of your dataset. Title of dataset Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability URL of dataset Data is available in the Portland State University PDXScholar data repository at: https://doi.org/10.15760/esm-data.1 Abstract Microplastics are an ecological stressor with implications for ecosystem and human health when present in seafood. -
The Immune Response of the Scallop Argopecten Purpuratus Is Associated with Changes in the Host Microbiota Structure and Diversity T
Fish and Shellfish Immunology 91 (2019) 241–250 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity T K. Muñoza, P. Flores-Herreraa, A.T. Gonçalvesb, C. Rojasc, C. Yáñezc, L. Mercadoa, K. Brokordtd, ∗ P. Schmitta, a Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile b Laboratorio de Biotecnología y Genómica Acuícola – Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Concepción, Chile c Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile d Laboratory of Marine Physiology and Genetics (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Coquimbo, Chile ARTICLE INFO ABSTRACT Keywords: All organisms live in close association with a variety of microorganisms called microbiota. Furthermore, several 16S rDNA deep amplicon sequencing studies support a fundamental role of the microbiota on the host health and homeostasis. In this context, the aim Host-microbiota interactions of this work was to determine the structure and diversity of the microbiota associated with the scallop Argopecten Scallop purpuratus, and to assess changes in community composition and diversity during the host immune response. To Innate immune response do this, adult scallops were immune challenged and sampled after 24 and 48 h. Activation of the immune Antimicrobial effectors response was established by transcript overexpression of several scallop immune response genes in hemocytes and gills, and confirmed by protein detection of the antimicrobial peptide big defensin in gills of Vibrio-injected scallops at 24 h post-challenge. -
Title the Anatomy of the Pacific Oyster, Crassostrea Gigas (Thurnberg
The Anatomy of the Pacific Oyster, Crassostrea gigas Title (Thurnberg)(Bivalvia : Ostreidae) Author(s) Evseev, G. A.; Yakovlev, Yu. M.; Li, Xiaoxu PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1996), 37(3-6): 239-255 Issue Date 1996-12-25 URL http://hdl.handle.net/2433/176265 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 37(3/6): 239-255, 1996 239 The Anatomy of the Pacific Oyster, Crassostrea gigas (Thurnberg) (Bivalvia: Ostreidae) G.A. EVSEEV, Yu. M. Y AKOVLEV Institute of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia and XrAoxu Lr Institute of Oceanology, Academia Sinica, Qingdao 266071, P.R. China Abstract The anatomy of the soft body parts of the Pacific oyster Crassostrea gigas is presented. Anatomical features of mantles, gills, labial palps, pericardia! cavity, heart, oesophagus, stomach, gastric shield, crystalline style sac and intestine are described in detail. These structure in C. gigas are compared with those in closely related species. We suggest that some anatomical features provide taxonomic charac teristics that may be used to distinguish C. gigas from morphologically similar species within and between genera. Key words: Crassostrea gigas, soft organ morphology, taxonomy Introduction The morphological features of the shells have been used extensively in oyster taxonomy. However, the utility of shell features in oyster taxonomy is limited by the high level of their intra-specific variation (Tchang Si & Lou Tze-Kong, 1956; Menzel, 1973). The use of shell structural features in oyster taxonomy is particularly problematic between morphologically similar species from the genera Crassostrea and Saccostrea. -
Upwelling Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D
July 2010 Volume 7, Issue 2 Newsletter of the Friends of Hatfield Marine Science CenterUpwelling www.hmsc.oregonstate.edu/friends Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D. Student, OSU’s Department of Fisheries and Wildlife juveniles at eight different beaches along the Oregon coast. Presence and Sandy beach surf zones occur along 70% of the distribution of the juveniles is related to whether the beach is located in Oregon coastline. These high energy environments are a littoral cell, which is a defined stretch considered ‘semi-enclosed’ because there is limited of sandy beach exchange of waters between these zones, which extend that is bordered by from the shoreline to the outermost breaker, and offshore rocky headlands that waters. Several fish species, including English sole, contain estuaries Northern anchovy, and Staghorn sculpin inhabit surf- with local Chinook zones, especially when they are juveniles, because it salmon popula- provides an abundant supply of potential prey and shelter tions. There are from predators. Although juvenile Chinook are thought also more juveniles to migrate from estuaries directly to the open ocean, present along sandy juveniles have also been collected within Oregon’s surf beaches adjacent to zones. estuaries. Densities of juveniles in the My M.Sc. research project at the Oregon Institute surf zone vary widely and are positively related to estuarine water tem- of Marine Biology suggested that surf-zones provide perature, suggesting that higher temperatures may influence movement an intermediate habitat for Chinook salmon between and prompt juveniles to exit the estuary. In surf-zones, juveniles grow at the estuary and the open ocean. -
The Fate of Spondylus Stocks (Bivalvia: Spondylidae) in Ecuador: Is Recovery Likely? Author(S): Annika K
The Fate of Spondylus Stocks (Bivalvia: Spondylidae) in Ecuador: Is Recovery Likely? Author(s): Annika K. Mackensen, Thomas Brey and Stanislaus Sonnenholzner Source: Journal of Shellfish Research, 30(1):115-121. 2011. Published By: National Shellfisheries Association DOI: 10.2983/035.030.0117 URL: http://www.bioone.org/doi/full/10.2983/035.030.0117 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 30, No. 1, 115–121, 2011. THE FATE OF SPONDYLUS STOCKS (BIVALVIA: SPONDYLIDAE) IN ECUADOR: IS RECOVERY LIKELY? ANNIKA K. MACKENSEN,1,2* THOMAS BREY2 AND STANISLAUS SONNENHOLZNER3 1Nazca Institute for Marine Research, Quito, Ecuador; 2Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany; 3Centro Nacional de Acuicultura e Investigaciones Marinas, San Pedro- Manglaralto, Ecuador ABSTRACT The bivalve genus Spondylus, with its large and magnificent shells, has played an important cultural and economic role in coastal Ecuador that reaches back to Valdivian and Incan times. -
MITOCHONDRIAL DNA and MORPHOLOGICAL IDENTIFICATION of Crassostrea Zhanjiangensis SP
MITOCHONDRIAL DNA AND MORPHOLOGICAL IDENTIFICATION OF Crassostrea zhanjiangensis SP. NOV. (BIVALVIA: OSTREIDAE): A NEW SPECIES SYMPATRIC WITH THE HONG KONG OYSTER IN ZHANJIANG, CHINA Xiangyun Wu*, Shu Xiao and Ziniu Yu Key Laboratory of Marine Bio-resource Sustainable Utilization, South China Sea Institute of Oceanology, Guangzhou, China [email protected]. Species-richness of oysters is high in the coastal areas of China, and cultivation of Crassostrea oysters is one of the largest coastal industries in this country. Wild oyster spat collection is economical and is still extensively practiced in these areas. Guandu (Zhanjiang, Guangdong Province) is a prime location for seed production of the Hong Kong oyster (C. hongkongensis), the most commonly cultured oyster in southern China. On the basis of our field investigations in Guandu’s Hong Kong oyster aquaculture industry, and based on descriptions from experienced local oyster farmers, a common “adulterated oyster” for oyster farming, nicknamed the ‘cat ear oyster,’ appears to be sympatric with the Hong Kong oyster. The ‘cat ear oyster’ could potentially influence the efficiency of Hong Kong oyster spat collection due to niche competition on spat collection devices. Mitochondrial sequences and morphological features of cat ear oysters do not match those of any recorded Crassostrea species, indicating that the cat ear oyster represents a heretofore undescribed and genetically distinct Crassostrea species in China, C. zhanjiangensis. mtDNA sequence analyses unambiguously confirm its phylogenetic status as the most basal taxon of the Asian Crassostrea. A comparative study of the shell characteristics of C. zhanjiangensis, and other Crassostrea species reveals several distinctive morphological traits, including a generally smaller body size, a deeply cupped left valve, and a right valve that is convex in adults but flat in young individuals. -
Chapter I Taxonomy
THE AMERICAN OYSTER CRASSOSTREA VIRGINICA GMELIN By PAUL S. GALTSOFF, Fishery Biologist BUREAU OF COMMERCIAL FISHERIES CHAPTER I TAXONOMY Page This broad characterization included a number Taxonomic characters _ 4 SheIL _ 4 of genera such as scallops, pen shells (Pinnidae), Anatomy _ 4 Sex and spawnlng _ limas (Limidae) and other mollusks which ob 4 Habitat _ 5 viously are not oysters. In the 10th edition of Larvll! shell (Prodlssoconch) _ 6 "Systema Naturae," Linnaeus (1758) wrote: The genera of living oysters _ 6 Genus 08trea _ 6 "Ostreae non orones, imprimis Pectines, ad Genus Cra8808trea _ 7 Genus Pycnodonte _ cardinem interne fulcis transversis numerosis 7 Bibliography _ 14 parallelis in utraque testa oppositis gaudentiquae probe distinguendae ab Areis polypleptoginglymis, The family Ostreidae consists of a large number cujus dentes numerosi alternatim intrant alterius of edibleand nonedible oysters. Their distribution sinus." Le., not all are oysters, in particular the is confined to a broad belt of coastal waters within scallops, which have many parallel ribs running the latitudes 64° N. and 44° S. With few excep crosswise inward toward the hinge on each shell tions oysters thrive in shallow water, their vertical on opposite sides; these should properly be dis distribution extending from a level approximately tinguished from Area polyleptoginglymis whose halfway between high and low tide levels to a many teeth alternately enter between the teeth depth of about 100 feet. Commercially exploited of the other side. oyster beds are rarely found below a depth of 40 In the same publication the European flat feet. oyster, Ostrea edulis, is described as follows: The· name "Ostrea" was given by Linnaeus "Vulgo Ostrea dictae edulis. -
Cultured Aquatic Species Information Programme Crassostrea Gigas (Thunberg, 1793)
Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Crassostrea gigas (Thunberg, 1793) I. Identity V. Status And Trends a. Biological Features VI. Main Issues II. Profile a. Responsible Aquaculture Practices a. Historical Background VII. References b. Main Producer Countries a. Related Links c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Crassostrea gigas Thunberg, 1793 [Ostreidae] FAO Names: En - Pacific cupped oyster, Fr - Huître creuse du Pacifique, Es - Ostión japonés Biological features Shell solid, inequivalve, extremely rough, extensively fluted, and laminated; left (lower) valve deeply cupped, its sides sometimes almost vertical, the right (upper) valve flat or slightly convex sitting withing left; inequilateral, beaks and umbones often overgrown; tending to be oblong in outline but often disorted and very irregular. The shape of the shell varies with the environment. Colour usually whitish with many purple streaks and spots radiating away from the umbo. The interior of the shell is white, with a single muscle scar that is sometimes dark, but never purple or black. FAO Fisheries and Aquaculture Department View FAO FishFinder Species fact sheet Profile Historical background Through its potential for rapid growth and its wide ranging tolerance to environmental conditions, the Pacific cupped oyster has become the oyster of choice for cultivation in many regions of the world. While its origins are in Japan, where it has been cultivated for centuries, it has been the subject of widespread introductions elsewhere, most significantly to the western seaboard of the United States of America from the 1920s and to France beginning in 1966. -
Milford Recreational Brochure
RECREATIONAL SHELLFISHING REQUIREMENTS AND GUIDELINES There is no license required for harvesting clams, mussels or oysters for your own consumption in Milford, CT. Harvest is limited to 1/2 bushel of shellfish (clams, mussels, oysters) per day taken during daylight hours. (1/2 bushel is approximately one 5 gallon bucket.) Implements used to collect shellfish must have openings or spacing between the teeth of 1” or greater. Oysters less than 3” in length must be returned to the harvest area. Hard clams less than 1” in thickness or that will pass through a ring of 1.5” internal diameter must be returned to the harvest area. Soft-shell clams (steamers) less than 1.5” in length must be returned to the harvest area. Recreational harvesters can not offer their shellfish for sale or barter. Recreationally harvested shellfish are intended to be consumed by the harvester and family members. Harvesting is limited to “Approved” and “Conditionally Approved-Open” areas, excluding franchised or leased shellfish beds. Recreational shellfishing in closed areas, (“Conditionally Approved-Closed,” “Restricted,” and “Prohibited” areas) whether for bait or personal consumption is illegal. Illegally shellfishing in “closed areas” subjects the harvester and his/her family to public health risks and fines. RECREATIONAL SHELLFISHING REQUIREMENTS AND GUIDELINES Shellfish should be promptly refrigerated in a self-draining container. They should never be stored in water or hung overboard from a dock or boat since they are filter feeders and may concentrate contaminants from that new environment. In the interest of preventing the growth of non-indigenous species, disease and parasites, no shellfish taken from or originating from areas outside of Connecticut’s Long Island Sound may be placed, planted or disposed of in Long Island Sound and its tributaries with out the written approval of the Connecticut Depart- ment of Agriculture, Bureau of Aquaculture. -
Meeting the Salinity Requirements of the Bivalve Mollusc Crassostrea
water Article Meeting the Salinity Requirements of the Bivalve Mollusc Crassostrea gigas in the Depuration Process and Posterior Shelf-Life Period to Improve Food Safety and Product Quality João A. Silvestre 1,Sílvia F. S. Pires 2 , Vitória Pereira 2 , Miguel Colaço 1, Ana P. L. Costa 2 , Amadeu M. V. M. Soares 2 , Domitília Matias 3, Filipa Bettencourt 3, Sergio Fernández-Boo 4, Rui J. M. Rocha 2,* and Andreia C. M. Rodrigues 2 1 Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.A.S.); [email protected] (M.C.) 2 CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (S.F.S.P.); [email protected] (V.P.); [email protected] (A.P.L.C.); [email protected] (A.M.V.M.S.); [email protected] (A.C.M.R.) 3 IPMA, Instituto Português do Mar e da Atmosfera, 8700-305 Olhão, Portugal; [email protected] (D.M.); [email protected] (F.B.) 4 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; [email protected] * Correspondence: [email protected] Citation: Silvestre, J.A.; Pires, S.F.S.; Abstract: Microbiological contamination of bivalve molluscs is one of the major concerns inherent to Pereira, V.; Colaço, M.; Costa, A.P.L.; food safety, thus depuration is frequently needed to assure food safety levels associated with their Soares, A.M.V.M.; Matias, D.; consumption. Salinity plays an important role in the metabolic activity of bivalves and as such can Bettencourt, F.; Fernández-Boo, S.; influence their depuration capacity. -
(Crassostrea Ariakensis, Fugita 1913) and Pacific (C-Gigas, Thunberg 1793) Oysters from Laizhou Bay, China
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2006 Age And Growth Of Wild Suminoe (Crassostrea Ariakensis, Fugita 1913) And Pacific (C-Gigas, Thunberg 1793) Oysters From Laizhou Bay, China JM Harding Roger L. Mann Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Harding, JM and Mann, Roger L., "Age And Growth Of Wild Suminoe (Crassostrea Ariakensis, Fugita 1913) And Pacific (C-Gigas, Thunberg 1793) Oysters From Laizhou Bay, China" (2006). VIMS Articles. 451. https://scholarworks.wm.edu/vimsarticles/451 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 25, No. 1, 73–82, 2006. AGE AND GROWTH OF WILD SUMINOE (CRASSOSTREA ARIAKENSIS, FUGITA 1913) AND PACIFIC (C. GIGAS, THUNBERG 1793) OYSTERS FROM LAIZHOU BAY, CHINA JULIANA M. HARDING* AND ROGER MANN Department of Fisheries Science, Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, Virginia 23062 ABSTRACT Shell height at age estimates from Suminoe (Crassostrea ariakensis) and Pacific (C. gigas) oysters from a natural oyster reef in Laizhou Bay, China were compared with shell height at age estimates from triploid C. ariakensis of known age from the Rappahannock River, Virginia. C. ariakensis and C. gigas reach shell heights in excess of 76 mm (3 inches) within 2 years after settlement regardless of the source location. -
Interactions Between Filter-Feeding Bivalves and Toxic Diatoms
toxins Article Interactions between Filter-Feeding Bivalves and Toxic Diatoms: Influence on the Feeding Behavior of Crassostrea gigas and Pecten maximus and on Toxin Production by Pseudo-nitzschia Aurore Sauvey 1,2,*, Françoise Denis 3,4,Hélène Hégaret 5, Bertrand Le Roy 1,2, Christophe Lelong 6, Orianne Jolly 7, Marie Pavie 2 and Juliette Fauchot 1,2,* 1 Normandie Université, UNICAEN, CNRS UMR 8067, BOREA, 14000 Caen, France; [email protected] 2 Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)—Université de Caen Normandie, MNHN, SU, UA, CNRS UMR 8067, IRD 207, 14000 Caen, France; [email protected] 3 Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)—MNHN, CNRS UMR 8067, SU, IRD 207, UCN, UA, Station de Biologie Marine, MNHN, 29900 Concarneau, France; [email protected] 4 Laboratoire Mer, Molécules, Santé, EA 2160 MMS, Le Mans Université, CEDEX 9, 72085 Le Mans, France 5 Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, Ifremer, IUEM, Technopôle Brest-Iroise, Rue Dumont d’Urville, 29280 Plouzané, France; [email protected] 6 Normandie Université, UNICAEN, EA2608, OeReCa, 14000 Caen, France; [email protected] 7 Normandie Université, UNICAEN, Centre de Recherches en Environnement Côtier (CREC)—Station Marine, Université de Caen Normandie, 14530 Luc-sur-Mer, France; [email protected] * Correspondence: [email protected] (A.S.); [email protected] (J.F.) Abstract: Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source Citation: Sauvey, A.; Denis, F.; of serious health problems for marine organisms. Filter-feeding organisms—e.g., bivalves feeding on Hégaret, H.; Le Roy, B.; Lelong, C.; toxigenic Pseudo-nitzschia spp.—are the main vector of DA in humans.