Organic Options for Striped Cucumber Beetle Management in Cucumbers Katie Brandt Grand Valley State University

Total Page:16

File Type:pdf, Size:1020Kb

Organic Options for Striped Cucumber Beetle Management in Cucumbers Katie Brandt Grand Valley State University Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 6-2012 Organic Options for Striped Cucumber Beetle Management in Cucumbers Katie Brandt Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Recommended Citation Brandt, Katie, "Organic Options for Striped Cucumber Beetle Management in Cucumbers" (2012). Masters Theses. 29. http://scholarworks.gvsu.edu/theses/29 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. ORGANIC OPTIONS FOR STRIPED CUCUMBER BEETLE MANAGEMENT IN CUCUMBERS Katie Brandt A thesis Submitted to the Graduate Faculty of GRAND VALLEY STATE UNIVERSITY In Partial Fulfillment of the Requirements For the Degree of Master of Science Biology June 2012 2 ACKNOWLEDGEMENTS Many thanks to my advisors, who helped me plan this research and understand the interactions of beetles, plants and disease in this system. Jim Dunn helped immensely with the experimental design and prevented me from giving up when my replication block was destroyed in a flood. Mathieu Ngouajio generously shared his expertise with organic vegetables, field trials and striped cucumber beetles. Mel Northup lent the HOBO weather stations, visited the farm to instruct me to set them up and later transferred the data into an Excel spreadsheet. Sango Otieno and the students at the Statistical Consulting Center at GVSU were very helpful with data analysis. Numerous farmworkers and volunteers also helped in the labor-intensive process of gathering data for this research. Tom Cary carried the responsibilities of winter planning for the 2011 Groundswell Farm season, so these results could be compiled and written. Anna Hoekstra was extremely helpful and accommodating while the research was conducted at our farm in 2009. Funding for this research was provided by a Presidential Research Grant at Grand Valley State University. iii 4 ABSTRACT Striped cucumber beetles (Acalymma vittata F.) are a serious pest of cucurbits, particularly on organic farms. These pests are the vector and overwintering host for bacterial wilt (Erwinia tracheiphila), which kills plants and can render cucumbers, melons and other produce unmarketable. During field research in 2009, row covers, compost tea and reflective mulch were compared on a commercial organic farm in Ottawa County, Michigan. I collected data on plant growth, incidence of bacterial wilt (Erwinia tracheiphila), marketable and unmarketable yields and profits. I found that row covers led to significant increases in plant growth, significant increases in marketable yield during the second harvest week (21-24 July 2009) and an increase in profits of $98.09 per 30.5 m (100 ft.) row as compared to controls. This would translate to 9062 more cucumbers per acre. Trends in the data also suggest that compost tea decreased bacterial wilt and the number of unmarketable cucumbers, but profits decreased due to high labor and supply costs. Reflective mulch reduced disease more than any other treatment, but lowered profits. Emergence of second-generation adult beetles coincided closely with recently-developed predictions of degree day development in this species. We recommend row covers to organic farmers as a first line of defense for striped iv 5 cucumber beetles, but also for increased yields and profits. This study also offers field data to confirm estimates of degree day development in striped cucumber beetles. KEY WORDS Acalymma vittata, Erwinia tracheiphila, Cucumis sativus, row covers, compost tea, reflective mulch v 6 TABLE OF CONTENTS LIST OF TABLES………………………………………………………… .. x LIST OF FIGURES………………………………………………………….xi CHAPTER I. LITERATURE REVIEW……….…………………………… 1 Striped cucumber beetle management…………………… 1 Life cycle and ecology…………………………………… 2 Cucurbitacins and other induced phytochemicals... 3 Agricultural impacts…………………………………….... 5 Bacterial wilt…………………………………….. 6 Measuring agricultural impacts………………….. 7 Organic control methods…………………………….…... 9 Exclusion………………………………………... 9 Boosting plant defenses…………………………. 11 Intercropping and trap cropping………………… 14 Biological control……………………………….. 15 Chemical and organic sprays……………………. 17 Research methods………………………………………... 18 vi 7 Sharing results with farmers…………………………….. 24 II. FIELD RESEARCH………… …………………………….. 27 Introduction……………………………………………... 27 Methods…………………………………………………. 30 Site and growing methods………………………. 30 Experimental design……………………………. 32 Treatments……………………………………… 32 Data collection…………………………………. 33 Statistical analysis……………………………… 36 Results…………………………………………………... 37 Early season beetle population………..……........ 37 Late season beetle population………………….... 37 Bacterial wilt……………………………………. 38 Yield…………………………………………….. 38 Leaf number…………………………………….. 40 Insect development…………………………….. 41 vii 8 Discussion………………………………………………. 41 Row covers……………………………………… 42 Compost tea…………………………………….. 43 Reflective mulch……………………………….. 43 Cucumber beetles……………………..………. 44 Confounding factors……………………………. 45 Statistical analysis……………………………… 46 Adoption by farmers……………………………. 46 Management implications……………………………… 47 III. ECONOMIC ANALYSIS.………………………………….. 58 Introduction…………….……………………………….. 58 Methods………..……………………………………….. 59 Results…………………………………………………. 59 Discussion……………………………………………... 60 Management implications……………………………... 65 References Cited………….……………………………………………. 72 viii 9 APPENDICES……………………………………………….………… 79 A. Photographs of research in progress and samples of marketable and unmarketable cucumbers…………………. 79 A1: Experimental Block 2……………………………. 80 A2: Flood-damaged leaves in Block 2……………….. 81 A3: Sticky trap placement in block 1………………… 82 A4: Examples of unmarketable and marketable cucumbers………………………………………… 83 A5: Increased growth rate under row covers…………. 84 A6: Downward-facing leaf growth in young transplants on reflective mulch…………………… 85 ix 10 LIST OF TABLES TABLE PAGE 2.1 Methods and data collection to evaluate striped cucumber beetle treatments in cucumbers in Ottawa County, Michigan……………… 48 2.2 Treatments for striped cucumber beetles in cucumbers…..………… 49 3.1 Expense list for experiment including 183 m (600 ft.) of cucumber plots……………………………………………………..… 66 3.2 Partial budget analysis of organic controls for striped cucumber beetles in cucumbers………...………………………………………. 67 3.3 Added profitability per 30.5 m (100 ft.) of cucumbers using various treatments…………………………………………………………… 68 3.4 Partial budget analysis of row covers for controlling striped cucumber beetles in cucumbers assuming optimistic, typical and pessimistic yields in a 30.5 m (100 ft.) row …………………………………….. 69 3.5 Partial budget analysis of row covers for controlling striped cucumber beetles in cucumbers with various prices in a 30.5m row……………… 70 x 11 LIST OF FIGURES FIGURE PAGE 1.1 Striped cucumber beetle………………………………………………... 1 2.1 Randomized plots comparing organic treatments for striped cucumber beetles in Ottawa County, Michigan………………..………. 50 2.2 Daily rainfall at field site of 2009 cucumber experiment……………… 51 2.3 Striped cucumber beetle population response to various pest controls………………………...………………………………………. 52 2.4 Striped cucumber beetle population on black and reflective plastic mulch in cucumber subplots…………………………………………... 53 2.5 Bacterial wilt infection rates using various treatments for its vector, striped cucumber beetles……….…………………….…. 54 2.6 Mean cucumber yield ± SE per 30.5 m (100 ft.) using various treatments for striped cucumber beetles………………………………………………. 55 2.7 Marketable cucumber yields per 30.5 m (100 ft.) row over harvest Season…………………………………………………………………. 56 2.8 Mean leaf number in cucumber plants is affected by various treatments for A. vittata. ……………………………………………… 57 3.1 Break-even analysis for using row covers in cucumbers, assuming a 30.5 m (100 ft.) row……………………………...………… 71 xi 12 CHAPTER I LITERATURE REVIEW Striped cucumber beetle management Striped cucumber beetles (Acalymma vittata F.,Coleoptera: Chrysomelidae) are ranked by organic growers nationwide as their most common and destructive pest problem (Walz 1999). This pest is the primary target for up to 10 annual insecticide applications on conventional farms, contributing to 35 confirmed pesticide residues on cucumbers (Hutchison 1994; Hollingsworth et al. 1998; Punzi et al. 2005). Organic farming can displace such chemical use, often while increasing farm profits. The $28.6 billion organic food and agriculture industry grew at 8% in 2010 and now represents 4% of retail food sales in the U.S. (Organic Trade Association 2011). Continued Figure 1.1 Striped cucumber beetle (Burkness & expansion of these environmental and economic Hutchinson, U. Minnesota http://www.vegedge.umn.edu/ benefits will hinge upon creative solutions to pest vegpest/CUCS/cucb.jpg) problems such as the striped cucumber beetle. Furthermore, less-toxic options for controlling striped cucumber beetles and other pests 1 can be used in conventional agriculture when they are shown to be more effective or less costly than chemical controls. Life cycle and ecology Striped cucumber beetles are the most damaging pest of cucurbit crops in Michigan, the Northeast and the Midwest (Grafius & Hooplingarner 1993; Latin 1993). High beetle populations defoliate young crops and transmit bacterial wilt (Erwinia tracheiphila, Enterobacteriales: Enterobacteriaceae),
Recommended publications
  • Squash Bug, Anasa Tristis (Degeer)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-077 Squash Bug, Anasa tristis (DeGeer)1 John L. Capinera2 Introduction Egg The squash bug, Anasa tristis, attacks cucurbits Eggs are deposited on the lower surface of (squash and relatives) throughout Central America, leaves, though occasionally they occur on the upper the United States, and southern Canada. Several surface or on leaf petioles. The elliptical egg is related species in the same genus coexist with squash somewhat flattened and bronze in color. The average bug over most of its range, feeding on the same plants egg length is about 1.5 mm and the width about 1.1 but causing much less injury. mm. Females deposit about 20 eggs in each egg cluster. Eggs may be tightly clustered (Figure 1) or Life Cycle spread a considerable distance apart, but an equidistant spacing arrangement is commonly The complete life cycle of squash bug commonly observed. Duration of the egg stage is about seven to requires six to eight weeks. Squash bugs have one nine days. generation per year in northern climates and two to three generations per year in warmer regions. In Nymph intermediate latitudes the early-emerging adults from the first generation produce a second generation There are five nymphal instars. The nymphal whereas the late-emerging adults go into diapause. stage requires about 33 days for complete Both sexes overwinter as adults. The preferred development. The nymph is about 2.5 mm in length overwintering site seems to be in cucurbit fields when it hatches, and light green in color.
    [Show full text]
  • Please Scroll Down for Article
    This article was downloaded by: [USDA National Agricultural Library] On: 1 October 2008 Access details: Access Details: [subscription number 790740294] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A critical evaluation of host ranges of parasitoids of the subtribe Diabroticina (Coleoptera: Chrysomelidae: Galerucinae: Luperini) using field and laboratory host records Stefan Toepfer a; Guillermo Cabrera Walsh b; Astrid Eben c; Rebeca Alvarez-Zagoya d; Tim Haye a; Feng Zhang a; Ulrich Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b USDA ARS South American Biocontrol Laboratory, Hurlingham, Buenos Aires, Argentina c Departamento de Ecología Funcional, Instituto de Ecología, Xalapa, Veracruz, Mexico d Instituto Politécnico Nacional, CIIDR-IPN, Durango, Mexico Online Publication Date: 01 January 2008 To cite this Article Toepfer, Stefan, Cabrera Walsh, Guillermo, Eben, Astrid, Alvarez-Zagoya, Rebeca, Haye, Tim, Zhang, Feng and Kuhlmann, Ulrich(2008)'A critical evaluation of host ranges of parasitoids of the subtribe Diabroticina (Coleoptera: Chrysomelidae: Galerucinae: Luperini) using field and laboratory host records',Biocontrol Science and Technology,18:5,483 — 504 To link to this Article: DOI: 10.1080/09583150802001742 URL: http://dx.doi.org/10.1080/09583150802001742 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
    [Show full text]
  • Insect Management
    C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing.
    [Show full text]
  • Bacterial Wilt of Cucurbits José Pablo Soto-Arias*, UW-Madison Plant Pathology
    XHT1229 Provided to you by: Bacterial Wilt of Cucurbits José Pablo Soto-Arias*, UW-Madison Plant Pathology What is bacterial wilt? Bacterial wilt is a common and destructive disease that affects cucurbits (i.e., plants in the cucumber family), including economically important crops such as melon (Cucumis melo), cucumber (Cucumis sativus) and, to a lesser extent, squash and pumpkin (Cucurbita spp.). This disease is distributed throughout the United States; and can be found anywhere that cucurbits are grown. What does bacterial wilt look Garden Facts Garden like? The most distinctive symptom exhibited by a plant with bacterial wilt is wilting and ultimately death. These symptoms are a consequence of the blockage of water movement inside of the plant. Symptoms appear first on leaves of a single vine (runner). Leaves may develop chlorotic (i.e. yellow) and necrotic (i.e. dead) areas as the disease progresses. Symptoms typically develop Sudden wilting and eventual death of melon, rapidly along individual runners and cucumber and squash plants can be due to eventually the plant’s crown is affected, bacterial wilt. (Photo courtesy of ISU-PIDC.) resulting in the entire plant dying. To determine if a symptomatic plant has bacterial wilt, cut a wilted vine near the base of the plant. Next cut a section from this vine and look for sticky threads to form between the two vine sections as you slowly pull them apart. The presence of these sticky threads is diagnostic. This technique works best for cucumbers and melon, but less well for squash and pumpkins. Where does bacterial wilt come from? Bacterial wilt of cucurbits is caused by the bacterium Erwinia tracheiphila.
    [Show full text]
  • Companion Plants for Better Yields
    Companion Plants for Better Yields PLANT COMPATIBLE INCOMPATIBLE Angelica Dill Anise Coriander Carrot Black Walnut Tree, Apple Hawthorn Basil, Carrot, Parsley, Asparagus Tomato Azalea Black Walnut Tree Barberry Rye Barley Lettuce Beans, Broccoli, Brussels Sprouts, Cabbage, Basil Cauliflower, Collard, Kale, Rue Marigold, Pepper, Tomato Borage, Broccoli, Cabbage, Carrot, Celery, Chinese Cabbage, Corn, Collard, Cucumber, Eggplant, Irish Potato, Beet, Chive, Garlic, Onion, Beans, Bush Larkspur, Lettuce, Pepper Marigold, Mint, Pea, Radish, Rosemary, Savory, Strawberry, Sunflower, Tansy Basil, Borage, Broccoli, Carrot, Chinese Cabbage, Corn, Collard, Cucumber, Eggplant, Beet, Garlic, Onion, Beans, Pole Lettuce, Marigold, Mint, Kohlrabi Pea, Radish, Rosemary, Savory, Strawberry, Sunflower, Tansy Bush Beans, Cabbage, Beets Delphinium, Onion, Pole Beans Larkspur, Lettuce, Sage PLANT COMPATIBLE INCOMPATIBLE Beans, Squash, Borage Strawberry, Tomato Blackberry Tansy Basil, Beans, Cucumber, Dill, Garlic, Hyssop, Lettuce, Marigold, Mint, Broccoli Nasturtium, Onion, Grapes, Lettuce, Rue Potato, Radish, Rosemary, Sage, Thyme, Tomato Basil, Beans, Dill, Garlic, Hyssop, Lettuce, Mint, Brussels Sprouts Grapes, Rue Onion, Rosemary, Sage, Thyme Basil, Beets, Bush Beans, Chamomile, Celery, Chard, Dill, Garlic, Grapes, Hyssop, Larkspur, Lettuce, Cabbage Grapes, Rue Marigold, Mint, Nasturtium, Onion, Rosemary, Rue, Sage, Southernwood, Spinach, Thyme, Tomato Plant throughout garden Caraway Carrot, Dill to loosen soil Beans, Chive, Delphinium, Pea, Larkspur, Lettuce,
    [Show full text]
  • WESTERN SPOTTED CUCUMBER BEETLE Coleoptera: Chrysomelidae Diabrotica Undecimpunctata Undecimpunctata ______DESCRIPTION
    Modified from Ralph E. Berry. 1998©. Insects and Mites of Economic Importance in the Northwest. 2nd Ed. 221 p. WESTERN SPOTTED CUCUMBER BEETLE Coleoptera: Chrysomelidae Diabrotica undecimpunctata undecimpunctata ___________________________________________________________________________ DESCRIPTION Adults are 6 mm long, yellowish-green with distinct black spots on the wing covers. This species is a subspecies of the southern corn rootworm, D. undicimpunctata howardi, which is a serious pest of corn in the central United States. Mature larvae of the western spotted cucumber beetle are 14 to 17 mm long. They are white, except the head and last abdominal segment, which are brown. ECONOMIC IMPORTANCE Larvae of this pest feed on roots of potatoes, corn, Adult snap beans, immature cole crops, and some other vegetables. On potatoes, feeding injury resembles damage caused by flea beetle larvae. Adults feed on corn silk, pollen, bean leaves, blossoms and developing pods, and pollen of cucurbits. This damage causes inadequate pollination resulting in reduced yields, poor seed set, and considerable wastage in beans at processing plants. Processors dock growers and downgrade quality if the damage from cucumber beetle adults exceeds the equivalent of 1.5 scars ("beetle bites") per 100 pods. Larva DISTRIBUTION AND LIFE HISTORY This species occurs throughout western Oregon and W. SPOTTED CUCUMBER BEETLE Washington. This insect overwinters as a fertilized ADULTS female. Adults are active during mild periods in the EGGS EGGS winter, but do not begin laying eggs until early LARVAE LARVAE spring. Eggs are deposited in the soil around the PUPAE PUPAE bases of host plants. Eggs hatch in seven to 10 days ADULTS ADULTS and larvae feed on roots for about three weeks before J F M A M J J A S O N D pupating in the soil.
    [Show full text]
  • Squash Bug, Anasa Tristis
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 4 August 2008 Squash Bug, Anasa tristis The squash bug, Anasa tristis, is common pest found on squash and pumpkins throughout the United States. It will also occasionally feed on other curcurbits as well (cucum- bers, melons, and gourds). This shield-shaped insect sort of resembles a stink bug, but is a bit larger, more elon- gated and gray instead of green. Adult squash bugs are about 5/8” long. They are gray to black with orange and brown The squash bug, Anasa tristis, is a common stripes along the edges of pest of squash. the abdomen. They overwin- ter amid plant debris, under rocks, or in other protected places in the yard. They emerge over an ex- tended period in late spring, and fl y to squash plants when the plants be- Adult squash bug, Anasa tristis. gin to grow. Females lay eggs on the undersides of squash leaves. The elliptical eggs vary in color from tan to orange to brick red. They are laid in small clusters of a dozen or more, often in characteristic triangular or V shapes in the angles formed by leaf veins. The eggs get darker in color just before hatching in a week to 10 days. Reddish squash bug eggs are laid in clusters. The small nymphs have red heads and legs, and greenish bodies. As the nymphs age the red color Young nymphs have red legs and heads, while older nymphs are grey. They generally occur in groups. turns to black, and the older ones look like they are covered with a grainy gray powder.
    [Show full text]
  • Transcriptome Sequencing of the Striped Cucumber Beetle, Acalymma Vittatum (F.), Reveals Numerous Sex-Specific Transcripts and Xenobiotic Detoxification Genes
    Article Transcriptome Sequencing of the Striped Cucumber Beetle, Acalymma vittatum (F.), Reveals Numerous Sex-Specific Transcripts and Xenobiotic Detoxification Genes Michael E. Sparks 1 , David R. Nelson 2 , Ariela I. Haber 1, Donald C. Weber 1 and Robert L. Harrison 1,* 1 Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, MD 20705, USA; [email protected] (M.E.S.); [email protected] (A.I.H.); [email protected] (D.C.W.) 2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-301-504-5249 Received: 24 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Acalymma vittatum (F.), the striped cucumber beetle, is an important pest of cucurbit crops in the contintental United States, damaging plants through both direct feeding and vectoring of a bacterial wilt pathogen. Besides providing basic biological knowledge, biosequence data for A. vittatum would be useful towards the development of molecular biopesticides to complement existing population control methods. However, no such datasets currently exist. In this study, three biological replicates apiece of male and female adult insects were sequenced and assembled into a set of 630,139 transcripts (of which 232,899 exhibited hits to one or more sequences in NCBI NR). Quantitative analyses identified 2898 genes differentially expressed across the male–female divide, and qualitative analyses characterized the insect’s resistome, comprising the glutathione S-transferase, carboxylesterase, and cytochrome P450 monooxygenase families of xenobiotic detoxification genes. In summary, these data provide useful insights into genes associated with sex differentiation and this beetle’s innate genetic capacity to develop resistance to synthetic pesticides; furthermore, these genes may serve as useful targets for potential use in molecular-based biocontrol technologies.
    [Show full text]
  • Anasa Tristis) Can Be a Serious Insect Pest for Organic Summer Squash Growers
    EFFECTS OF COVER CROPS AND ORGANIC INSECTICIDES ON SQUASH BUG (ANASA TRISTIS) POPULATIONS by LINDSAY NICHOLE DAVIES (Under the Direction of David Berle) ABSTRACT Squash bugs (Anasa tristis) can be a serious insect pest for organic summer squash growers. The purpose of this research was to evaluate two methods to control A. tristis populations. The first experiment involved planting cover crops adjacent to summer squash in an effort to attract natural enemies to keep A. tristis populations in check. Natural enemies were attracted to the plots, but did not significantly reduce A. tristis populations. This may have been due to other food sources in the plots, such as pollen, nectar, and aphids. Also, summer squash yields were negatively affected by the cover crop treatments. The second experiment involved evaluating the efficacy of organic insecticides on A. tristis adults and nymphs. Results of this study showed pyrethrin-based sprays are best for controlling A. tristis. INDEX WORDS: Summer squash, Diversified planting, Natural enemies, Pesticides, Organic agriculture, Sustainable agriculture, Biological control EFFECTS OF COVER CROPS AND ORGANIC INSECTICIDES ON SQUASH BUG (ANASA TRISTIS) POPULATIONS by LINDSAY NICHOLE DAVIES B.S., Indiana University, 2011 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2016 © 2016 Lindsay Nichole Davies All Rights Reserved EFFECTS OF COVER CROPS AND ORGANIC INSECTICIDES ON SQUASH BUG (ANASA TRISTIS) POPULATIONS by LINDSAY NICHOLE DAVIES Major Professor: David Berle Committee: Paul Guillebeau Elizabeth Little Electronic Version Approved: Suzanne Barbour Dean of the Graduate School The University of Georgia May 2016 DEDICATION This thesis is dedicated to my friends, family, and fiancé.
    [Show full text]
  • Colorado Weed Management Association
    Summit County Weeds List A Musk Thistle Myrtle Spurge Oxeye Daisy Orange Hawkweed Perennial Pepperweed List B Plumeless Thistle Absinth Wormwood Russian Knapweed Black Henbane Russian Olive Bull Thistle Salt Cedar Canada Thistle Scotch Thistle Chamomile Spotted Knapweed Chinese Clematis Sulfur Cinquefoil Common Tansy Yellow Toadflax Dalmation Toadflax Wild Caraway Dame's Rocket List C Diffuse Knapweed Common Mullein Hoary Cress Downy Brome Houndstongue Field Bindweed Leafy Spurge Poison Hemlock Photographs and information courtesy of the Colorado Weed Management Association www.cwma.org/. Absinth Woormwood • Asteraceae - Sunflower family • Perennial forb or herb, dying back to ground every year, has strong sage odor • 3-5 ft tall Flowers small, yellow, inconspicuous, numerous 1/8in wide • Flowers late July-August • Stems arise from taproot, as many as 20 or more, covered with fine silky hairs • Leaves divided into deeply lobed leaflets, light to olive green, 2-5 in long • Fruit one seed, 1/16in or less long, smooth, flattened and light gray-brown in color • Taproot upt to 2 in wide with shallow lateral branches • Reduces available forage, tainting milk of cattle • Strong medicinal odor Black Henbane Black Henbane, a member of the nightshade family, may be an annual or biennial and grows from 1 to 3 feet tall. The leaves are coarsely-toothed to shallowly lobed and pubescent. Flowers, blooming along the long racemes, are brownish-yellow with a purple center and purple; veins. The plant has a foul odor. Black Henbane is a native of Europe and has been cultivated as an ornamental. It has spread throughout the United States and is a common weed of pastures, fence rows, roadsides, and waste areas.
    [Show full text]
  • Disease and Insect Pest Management in Organic Cucurbit Production Hayley Nelson Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Disease and insect pest management in organic cucurbit production Hayley Nelson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Plant Pathology Commons Recommended Citation Nelson, Hayley, "Disease and insect pest management in organic cucurbit production" (2019). Graduate Theses and Dissertations. 17066. https://lib.dr.iastate.edu/etd/17066 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Disease and insect pest management in organic cucurbit production by Hayley Marie Nelson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Plant Pathology Program of Study Committee: Mark L. Gleason, Major Professor Gwyn A. Beattie Erin W. Hodgson Ajay Nair Alison E. Robertson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University
    [Show full text]
  • The Importance of Environmentally-Acquired Bacterial Symbionts for the Squash Bug (Anasa Tristis), a Significant Agricultural Pest
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452367; this version posted July 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The importance of environmentally-acquired bacterial symbionts for the squash bug (Anasa tristis), a significant agricultural pest Tarik S. Acevedo1, Gregory P. Fricker1, Justine R. Garcia1,2, Tiffanie Alcaide1, Aileen Berasategui1, Kayla S. Stoy, Nicole M. Gerardo1* 1Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA 2Department of Biology, New Mexico Highlands University, 1005 Diamond Ave, Las Vegas, NM, 87701, USA *Correspondence: Nicole Gerardo [email protected] Keywords: squash bugs, Cucurbit Yellow Vine Disease, Coreidae, symbiosis, Caballeronia bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452367; this version posted July 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 InternationalCaballeronia license. -Squash Bug Symbiosis ABSTRACT Most insects maintain associations with microbes that shape their ecology and evolution. Such symbioses have important applied implications when the associated insects are pests or vectors of disease. The squash bug, Anasa tristis (Coreoidea: Coreidae), is a significant pest of human agriculture in its own right and also causes damage to crops due to its capacity to transmit a bacterial plant pathogen.
    [Show full text]