A STELLAR CAREER by Benjamin Skuse the Astronomer Who Taught Us We Are All Made of Stardust Will Celebrate Her 100Th Birthday On

Total Page:16

File Type:pdf, Size:1020Kb

A STELLAR CAREER by Benjamin Skuse the Astronomer Who Taught Us We Are All Made of Stardust Will Celebrate Her 100Th Birthday On A STELLAR CAREER by Benjamin Skuse Happy Birthday, The astronomer who taught us we are all made Margaret of stardust will celebrate her 100th birthday on Burbidge August 12, 2019. ARCHIVE S&T CYGNUS LOOP: ESA / DIGITIZED SKY SURVEY / CALTECH; BURBIDGE: 60 JULY 2019 • SKY & TELESCOPE ©2019 Sky & Telescope. All rights reserved. LADY STARDUST Margaret Burbidge, who celebrates her 100th birthday in August, had a long and stellar career in multiple fields of astrophysics. One of her most significant achievements was formulating our understand- ing of nucleosynthesis in stars. Among positions she held in her lifetime were director of the Royal Greenwich Observatory and president of the American Astronomical Society, both the first time that a woman filled the post. The photograph shows Burbidge in Dallas, Texas, in February 1964. ©2019 Sky & Telescope. All rights reserved. skyandtelescope.com • JULY 2019 61 A Stellar Career ou can’t give telescope time for this junk science! Who and for the first time the stars were clearly visible to her, “ does she think she is?” blustered a young upstart upon and she was smitten.” Yhearing that an elderly astronomer wanted half a night This fascination, combined with a talent for mathemat- with one of the brand-new Keck telescopes to observe objects ics, developed to the point where she was reading the books that might disprove the Big Bang theory. of astronomer and mathematician Sir James Jeans, a distant Observatory Director Joe Miller was quick to put the relative on her mother’s side, by the age of 12. She went on youngster in his place: “You just look up Margaret Burbidge, to study astronomy at University College London, graduat- the Margaret Burbidge, and you’ll know who she is,” he said. ing in the summer of 1939 with little ceremony due to the “If Margaret Burbidge wants half a night to draw up pic- looming cloud of war. tures of Mars, I’ll give it to her — whether we think it’s crazy Over the next few years, the fresh graduate split her time or not, we’re going to show respect to one of the greatest between maintaining the University of London Observatory at astronomers of the 20th century.” Mill Hill in the absence of the many scientists and technicians Though the night turned out to be cloudy and she wouldn’t have found evidence to support an alternative to the Big Bang anyway, this mid-1990s episode — when Burbidge u THE QUARTET Margaret was already in her 70s — is but one of many in a career span- and Geoff teamed up with Wil- ning more than 60 years that highlight a determination to ly Fowler (third from left) and Fred Hoyle (at right) to write push the frontiers of human knowledge. one of the seminal papers in Born Eleanor Margaret Peachey in Davenport, UK, to all of astrophysics. They not chemist parents, Burbidge caught the astronomy bug early. only worked together, they “She became interested in the stars when she was three or also played together — here four years old,” explains her daughter, Sarah Burbidge. “Her they’re celebrating Fowler’s 60th birthday in July 1971, ad- family took a night ferry crossing to France for a holiday, miring his model train engine. Triumph Over Obstacles In her largely quiet and undemonstrative way, Burbidge’s handling of the many moments of discrimination she encountered during her career inspired other female astronomers to pursue and achieve their own ambitions. 1945 was accepted. The couple Payne-Gaposchkin and Helen 1972 With World War II ending, stayed in a separate summer Sawyer Hogg, so it wasn’t at Just a year later, Burbidge Burbidge saw an opportu- cottage on the mountain away all surprising when the AAS became the first female nity to gain “access to larger from the exclusively male wanted to award Burbidge astronomer to become a telescopes, better instruments dormitory, and Margaret was with the accolade. What was member of the National Acad- and clearer skies” in the U.S. officially only there as Geoff’s surprising, instead, was the emy of Sciences, and the first through an advertisement assistant. In reality, Geoff rejection letter Burbidge wrote female director of the Royal for a Carnegie Fellowship at conducted the dark room in response. In it, she said “it Greenwich Observatory — but - Mount Wilson Observatory. work and smoked cigars, is high time that discrimina- wasn’t elected Astronomer VOL. However, her hopes were while Margaret finally got to tion in favor of, as well as Royal, the first and only time immediately dashed when observe the heavens from against, women in profes- in the organization’s history her application was denied Mount Wilson. sional life be removed, and a this occurred. Instead, Martin — simply on account of her prize restricted to women is Ryle was given the position. gender. “A guiding operational 1971 in this category.” Her refusal Whether this was pure gender principle in my life was acti- The Annie Jump Cannon led to the creation of the first discrimination or a symptom vated,” she said in her 1994 Award was the American working group on the sta- of political shenanigans in the PHYSICS REVIEWS MODERN OF memoir. “If frustrated in one’s Astronomical Society’s (AAS) tus of women in astronomy, British astronomical com- endeavors by a stone wall . oldest prize and the only and increased awareness of munity remains unclear. What one must find a way around.” one exclusively for women. discrimination against women was clear was that Burbidge Ten years later, Geoff submit- It had been awarded to and other minority groups in didn’t want to be involved in 29, NO. 4, P. 547 (1957) / AMERICAN (1957) 547 29, NO. PHYSICAL P. 4, SOCIETY ted another application, which luminaries such as Cecilia astronomy. the turmoil within British as- QUARTET: MASTER AND FELLOWS OF ST JOHN’S COLLEGE / TEXTURE: WRIT STARDUST CLAYTON; DONALD / CAMBRIDGE ERFANTAST / ISTOCK / GETTY IMAGES PLUS E. M. BURBIDGE ET AL. / 62 JULY 2019 • SKY & TELESCOPE ©2019 Sky & Telescope. All rights reserved. sucked into the war effort, fabricating optical instruments for wife always used to say ‘If Queen Elizabeth ever needed a the armed forces, and graduate studies. stand-in, Margaret could do it’.” For her PhD thesis, she analyzed spectra of the variable But appearances can be deceiving. Though Geoff had star Gamma Cassiopeiae. She observed in the harshest of strong scientific views and a penchant for a heated argu- conditions, often alone at night in a cramped space under a cold open dome, sometimes with the fear-inducing sounds of flying bombs going off around her. Yet she never complained, offering the first hint of the steely determination and thirst for knowledge that would later define her: “Those nights, standing or sitting on a ladder in the dome of the Wilson reflector . fulfilled my early dreams,” Burbidge later recalled in a 1994 memoir. The years immediately following World War II would turn out to be career-defining for the young astronomer. Along- side giving classes on practical astronomy on the observatory roof — to students that included an enthusiastic undergradu- ate named Arthur C. Clarke — she also attended graduate lectures in physics. There, she immediately hit it off with “an interesting person” called Geoffrey (Geoff) Burbidge who she would go on to marry just six months later. From the outside, the pair made an unlikely couple. Geoff was a large man with a truculent, impatient character, while Margaret was so demure and quiet that Miller claims, “My tronomy at the time, and she 1983 tendered her resignation just a B2FH was a transformative year and a half later. paper deserving of the highest accolades. And in 1983 this 1976 was recognized when Fowler Despite, or perhaps because was awarded the Nobel Prize of, the Annie Jump Can- in Physics. Yet even Fowler non Award rejection, Bur- was shocked by the omission bidge was elected the first of his colleagues. Hoyle could woman president of the AAS. have been left out for various At the time, the U.S. Equal reasons: his stance on the Big Rights Amendment — guar- Bang theory, the various out- - anteeing the same rights for landish ideas he put forward in VOL. all American citizens regard- later life, or for heavy criticism less of gender — had been of the committee in 1974 for ratified by all but three states. awarding Antony Hewish and Burbidge put forward to failing to recognize Jocelyn the membership the idea of Bell Burnell’s contributions in banning annual AAS meet- discovering the first pulsar. Vari- ings from being held in the ous commentators have since REVIEWS OF MODERN PHYSICS REVIEWS MODERN OF three dissenting states. She posited that Bell Burnell’s and received highly polarized Burbidge’s Nobel omissions p THE B2FH PAPER This seminal paper on stellar nucleosynthesis, responses, but it narrowly were but two of many examples headed by Margaret Burbidge, was cited so often that the authors were passed, offering a signal of of sexism in astronomy. Bur- referred to as “B2FH.” Above is a schematic diagram of the nuclear support from the AAS for bidge remains characteristically processes by which the synthesis of elements in stars takes place. This 29, NO. 4, P. 547 (1957) / AMERICAN (1957) 547 29, NO. PHYSICAL P. 4, SOCIETY QUARTET: MASTER AND FELLOWS OF ST JOHN’S COLLEGE / TEXTURE: WRIT STARDUST CLAYTON; DONALD / CAMBRIDGE ERFANTAST / ISTOCK / GETTY IMAGES PLUS E. M. BURBIDGE ET AL. / women in science. reserved on the subject. tour de force is 108 pages long. ©2019 Sky & Telescope. All rights reserved. skyandtelescope.com • JULY 2019 63 A Stellar Career u PAGE FROM AN OBSERVING LOGBOOK – AUGUST 3, 1944 Burbidge conducted her PhD research during the World War II years.
Recommended publications
  • Ira Sprague Bowen Papers, 1940-1973
    http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington.
    [Show full text]
  • APS Far West Section 2018 Newsletter
    APS Far West Section 2018 Newsletter Letter from the Chairs By Hendrik Ohldag, SLAC National Accelerator Laboratory (chair, picture) Andreas Bill, California State University Long Beach (past chair) Dear Fellow APS Member, The Far West Section (FWS) of the American Physical Society aims at bringing together physicists active in academia, industry and research institutions. We welcome all who have a background in, or a link to physics and wish to share their experience and knowledge, or simply wish to stay in touch with colleagues and the advances in the field. Most of our members live in California, Hawaii or Nevada, but the section is open to all who are APS members. Though all can be member of the FWS for free(!), not all are members. If you are an APS member and read these lines you should also be a section member. If not yet, just send a short email to [email protected] to express your interest in joining the Far West Section, or go online using your APS membership credentials (click on “Membership”). Please do so now, and read the rest of the letter after… Physics has undergone many changes in recent years and those in our Far West Section region have played a major role in shaping the physics landscape. Not only have we advanced knowledge in key areas of fundamental research, teaching and industry, but some of our members have also contributed in important ways to the APS itself. The fact that physics has changed so much also means that many more job opportunities are available to physics students.
    [Show full text]
  • Professor Margaret Burbidge Obituary Trailblazing Astronomer Hailed As ‘Lady Stardust’ Who Became the First Woman Director of the Royal Greenwich Observatory
    OBITUARY Professor Margaret Burbidge obituary Trailblazing astronomer hailed as ‘Lady Stardust’ who became the first woman director of the Royal Greenwich Observatory Wednesday April 08 2020, 12.01am, The Times Margaret Burbidge showed how heavier elements are produced from lighter ones in stars AMERICAN INSTITUTE OF PHYSICS/SCIENCE PHOTO LIBRARY In August 1944 Margaret Burbidge, then a young astronomer driven by a thirst for knowledge that would later define her, was studying for her PhD thesis. Her subject was a star called Gamma Cassiopeiae and she was not going to allow the Second World War to stand in her way. Each evening she would travel from the family home close to Hampstead Heath to the University of London Observatory at Mill Hill Park and open up the telescope named after its donor, JG Wilson. She would then spend hours sitting in the cramped and cold space below it, alone with her view of the stars. At that time the Luftwaffe was sending doodlebug flying bombs across the Channel to terrorise the capital but Burbidge ignored the danger. On the night of August 3, her log notes that shortly before 10pm, just after she had opened up the telescope, a flying bomb exploded so close to the observatory that the reverberations from the impact shifted the star out of the telescope’s field of vision. Undeterred she started her observations again a few minutes later only for another doodlebug to explode, this time farther away. Although the star was temporarily lost again she quickly recovered it and completed her observations. “Those nights, standing or sitting on the ladder in the dome of the Wilson reflector .
    [Show full text]
  • Nucleosynthesis
    Nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons. The first nuclei were formed about three minutes after the Big Bang, through the process called Big Bang nucleosynthesis. Seventeen minutes later the universe had cooled to a point at which these processes ended, so only the fastest and simplest reactions occurred, leaving our universe containing about 75% hydrogen, 24% helium, and traces of other elements such aslithium and the hydrogen isotope deuterium. The universe still has approximately the same composition today. Heavier nuclei were created from these, by several processes. Stars formed, and began to fuse light elements to heavier ones in their cores, giving off energy in the process, known as stellar nucleosynthesis. Fusion processes create many of the lighter elements up to and including iron and nickel, and these elements are ejected into space (the interstellar medium) when smaller stars shed their outer envelopes and become smaller stars known as white dwarfs. The remains of their ejected mass form theplanetary nebulae observable throughout our galaxy. Supernova nucleosynthesis within exploding stars by fusing carbon and oxygen is responsible for the abundances of elements between magnesium (atomic number 12) and nickel (atomic number 28).[1] Supernova nucleosynthesis is also thought to be responsible for the creation of rarer elements heavier than iron and nickel, in the last few seconds of a type II supernova event. The synthesis of these heavier elements absorbs energy (endothermic process) as they are created, from the energy produced during the supernova explosion. Some of those elements are created from the absorption of multiple neutrons (the r-process) in the period of a few seconds during the explosion.
    [Show full text]
  • Science Fiction Stories with Good Astronomy & Physics
    Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball.
    [Show full text]
  • Primordial Nucleosynthesis: from Precision Cosmology To
    DSF-20/2008, FERMILAB-PUB-08-216-A, IFIC/08-37 Primordial Nucleosynthesis: from precision cosmology to fundamental physics Fabio Iocco a1 , Gianpiero Mangano b, Gennaro Miele b,c, Ofelia Pisanti b, Pasquale D. Serpico d2 aINAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy bDip. Scienze Fisiche, Universit`adi Napoli Federico II & INFN, Sez. di Napoli, Complesso Univ. Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy c Instituto de F´ısica Corpuscular (CSIC-Universitat de Val`encia), Ed. Institutos de Investigaci´on, Apartado de Correos 22085, E-46071 Val`encia, Spain dCenter for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, USA Abstract We present an up-to-date review of Big Bang Nucleosynthesis (BBN). We discuss the main improvements which have been achieved in the past two decades on the overall theoretical framework, summarize the impact of new experimental results on nuclear reaction rates, and critically re-examine the astrophysical determinations of light nuclei abundances. We report then on how BBN can be used as a powerful test of new physics, constraining a wide range of ideas and theoretical models of fundamental interactions beyond the standard model of strong and electroweak forces and Einstein’s general relativity. Key words: Primordial Nucleosynthesis; Early Universe; Physics Beyond the arXiv:0809.0631v2 [astro-ph] 16 Apr 2009 Standard Model PACS: 98.80.Ft; 26.35.+c; 98.62.Ai Contents 1 Introduction 3 2 Standard Cosmology 6 1 Present address: Institut
    [Show full text]
  • A New Universe to Discover: a Guide to Careers in Astronomy
    A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry.
    [Show full text]
  • UCB Conservatives Take Control
    I Burbidge on the universe What we're expanding into by Han :\"bar ' 'I'm vcr ' pIcas d ," sh> Sd ld . ' 'I'm ry Managing Editor interc sted In h<.lvlng more WOOl n in the ph cal " I believ that the pi 'tur of the universe we S 'i nc s. W have very few " v But what d e <.In <.tstronorner do at fr , D? have now i much too simplistic. I b Ii ve th I r al thing is much mor compli ated. If you talk Burbldg is on i..I team headed by Ri chard about the univers you find that people find it Harms of th D Physics Departm nt, which hard to think of an xpandin,g univ r . The ha b en harg d with designing a pe trograph ay, OK , what' out ide? WhClt's it expanding for p ce tele cop , chedul d to be put into into? That's becau w think in terms of our orbit in 1983. Th team is one of five worldwide own ordinary everyday experience, and teams who i building in truments for th 96 therefore the co molog we ' \' 'on tru ,t d is as in h diameter telescop . impl a possible," said Ma rgar t Burbidge, a There is a need for the pace telescope, aid CSD professor of phy ics. Burbidge. " We 'll have a chance to study the But Burbidge is also currently pre identofthe ultraviolet region which has been cut off to us American A tronomical ociety, the first because of th earth ' atmosphere.
    [Show full text]
  • Phi Beta Kappa Visiting Scholars 1956-57- 2016-2017 (61 Years)
    Phi Beta Kappa Visiting Scholars 1956-57- 2016-2017 (61 years) 2016-2017 (112 visits) Adorno, Rolena Spanish/Latin American literatur Yale Bialek, William physics Princeton Ehrman, Bart D. religion, New Testament UNC-Chapel Hill Grosz, Barbara J. computer science Harvard Hochschild, Jennifer L. political science Harvard Kitcher, Philip philosophy Columbia Lester, Marsha I. chemistry Penn Morse, Nora Naranjo fine arts, poetry, sculpture Espanola, NM Rodgers, Daniel T. American history & culture Princeton Sabloff, Jeremy A. anthropology, Maya Penn Weiman, David F. economic history Barnard Wexler, Laura American studies Yale Witt, John Fabian law, American history Yale Wright, Patricia anthropology/primatology SUNY, Stony Brook Xiao, Shuhai geobiology/paleobiology Virginia Tech 2015-2016 (100 visits) Michael Bérubé English, disability studies Penn State Caroline Bruzelius art, art history Duke David K. Campbell physics, engineering Boston U. Hazel V. Carby African American studies Yale Carol Greenhouse anthropology, sociocultural Princeton David B. Grusky sociology, inequality, poverty Stanford Rigoberto Hernandez biochemistry, diversity studies Georgia Tech Mae Ngai history, Asian American studies Columbia Judith Resnik law Yale Timothy Rowe paleontology, geology UTAustin Larry A. Silver art history, Renaissance Penn Harold W. Stanley political science, elections Southern Methodist Richard Sylla American economic history NYU Blaire Van Valkenburgh vertebrate paleonbiology UCLA Vincent L. Wimbush religion Inst.SignifyingScriptures 2014-2015 (96 visits) Jeffrey C. Alexander sociology Yale William Y. Arms computer science Cornell Wendy Brown political science UCBerkeley Caroline Bruzelius art, art history Duke Philip J. Deloria history, American Indian Michigan Gerald Graff English, education Illinois at Chicago Kathleen McGarry economics, aging UCLA Gregory A. Petsko neurology, neuroscience Cornell Med.
    [Show full text]
  • Direct Measurement of the Neutron
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 1-9-2020 Stellar Nucleosynthesis: Direct Measurement of the Neutron- Capture Cross Sections of Stable Germanium Isotopes and Design of a Next Generation Ion Trap for the Study of Beta- Delayed Neutron Emission Alexander Laminack Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Instrumentation Commons, Nuclear Commons, Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Laminack, Alexander, "Stellar Nucleosynthesis: Direct Measurement of the Neutron-Capture Cross Sections of Stable Germanium Isotopes and Design of a Next Generation Ion Trap for the Study of Beta- Delayed Neutron Emission" (2020). LSU Doctoral Dissertations. 5131. https://digitalcommons.lsu.edu/gradschool_dissertations/5131 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. STELLAR NUCLEOSYNTHESIS: DIRECT MEASUREMENT OF THE NEUTRON-CAPTURE CROSS SECTIONS OF STABLE GERMANIUM ISOTOPES AND DESIGN OF A NEXT GENERATION ION TRAP FOR THE STUDY OF β-DELAYED NEUTRON EMISSION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics and Astronomy by Alexander Laminack B. S., The Unviersity of Alabama, 2015 May 2020 To my wife and son: Kristy Allen Alexander Laminack and Daniel Allen Laminack.
    [Show full text]
  • Nucleosynthetic Isotope Variations of Siderophile and Chalcophile
    Reviews in Mineralogy & Geochemistry Vol.81 pp. 107-160, 2016 3 Copyright © Mineralogical Society of America Nucleosynthetic Isotope Variations of Siderophile and Chalcophile Elements in the Solar System Tetsuya Yokoyama Department of Earth and Planetary Sciences Tokyo Institute of Technology Ookayama, Tokyo 152-885 Japan [email protected] Richard J. Walker Department of Geology University of Maryland College Park, MD 20742 USA [email protected] INTRODUCTION Numerous investigations have been devoted to understanding how the materials that contributed to the Solar System formed, were incorporated into the precursor molecular cloud and the protoplanetary disk, and ultimately evolved into the building blocks of planetesimals and planets. Chemical and isotopic analyses of extraterrestrial materials have played a central role in decoding the signatures of individual processes that led to their formation. Among the elements studied, the siderophile and chalcophile elements are crucial for considering a range of formational and evolutionary processes. Consequently, over the past 60 years, considerable effort has been focused on the development of abundance and isotopic analyses of these elements in terrestrial and extraterrestrial materials (e.g., Shirey and Walker 1995; Birck et al. 1997; Reisberg and Meisel 2002; Meisel and Horan 2016, this volume). In this review, we consider nucleosynthetic isotopic variability of siderophile and chalcophile elements in meteorites. Chapter 4 provides a review for siderophile and chalcophile elements in planetary materials in general (Day et al. 2016, this volume). In many cases, such variability is denoted as an “isotopic anomaly”; however, the term can be ambiguous because several pre- and post- Solar System formation processes can lead to variability of isotopic compositions as recorded in meteorites.
    [Show full text]
  • Women in Astronomy: an Introductory Resource Guide
    Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [April 2019] © copyright 2019 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Maria Mitchell Cecilia Payne ______________________________________________________________________________ Table of Contents: 1. Written Resources on the History of Women in Astronomy 2. Written Resources on Issues Women Face 3. Web Resources on the History of Women in Astronomy 4. Web Resources on Issues Women Face 5. Material on Some Specific Women Astronomers of the Past: Annie Cannon Margaret Huggins Nancy Roman Agnes Clerke Henrietta Leavitt Vera Rubin Williamina Fleming Antonia Maury Charlotte Moore Sitterly Caroline Herschel Maria Mitchell Mary Somerville Dorrit Hoffleit Cecilia Payne-Gaposchkin Beatrice Tinsley Helen Sawyer Hogg Dorothea Klumpke Roberts 6.
    [Show full text]