Conversion of Carbohydrates Biomass Into Levulinate Esters Using Heterogeneous Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

Conversion of Carbohydrates Biomass Into Levulinate Esters Using Heterogeneous Catalysts See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/251574141 Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts ARTICLE in APPLIED ENERGY · DECEMBER 2011 Impact Factor: 5.61 · DOI: 10.1016/j.apenergy.2011.05.049 CITATIONS READS 47 87 4 AUTHORS: Lincai Peng Lu Lin Kunming University of Science and Technol… Dalian University of Technology 23 PUBLICATIONS 287 CITATIONS 100 PUBLICATIONS 1,261 CITATIONS SEE PROFILE SEE PROFILE Hui Li Qiulin Yang Kunming University of Science and Technol… Tianjin University of Science and Technology 17 PUBLICATIONS 153 CITATIONS 12 PUBLICATIONS 91 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Lincai Peng letting you access and read them immediately. Retrieved on: 24 November 2015 Applied Energy 88 (2011) 4590–4596 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts ⇑ Lincai Peng, Lu Lin , Hui Li, Qiulin Yang State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China article info abstract Article history: The catalytic performances of common solid acids (ZSM-5(25), ZSM-5(36), NaY, H-mordenite, Zr3(PO4)4, Received 20 February 2011 2À 2À SO4 /ZrO2,SO4 /TiO2, and TiO2) for the conversion of carbohydrates such as glucose to methyl levulinate Received in revised form 22 May 2011 in near-critical methanol were investigated to develop an environmentally benign catalyst with high Accepted 26 May 2011 activity. Among these catalysts employed, sulfated metal oxides (especially SO2À/TiO ) were found to Available online 21 June 2011 4 2 be a type of potential catalysts for prospective utilization, which showed remarkably high selectivity and yield of methyl levulinate and had negligible undesired dimethyl ether formation from the dehydra- Keywords: tion of methanol. With SO2À/TiO as the catalyst, methyl levulinate in ca. 43, 33 and 59 mol% yields could Carbohydrates 4 2 be obtained from sucrose, glucose and fructose, respectively, at 473 K for 2 h reaction time with a catalyst Catalysis 2À Methyl levulinate loading of 2.5 wt.%. The heterogeneous catalyst (SO4 /TiO2) was easily recovered by filtration and exhib- Heterogeneous catalyst ited good catalytic activities after calcination in five cycles of reusing. The surface structure and acidity 2À 2À SO4 /TiO2 variations of the fresh and recycled SO4 /TiO2 catalysts after calcination were characterized by XRD and NH3-TPD techniques. The results indicate that the catalyst crystallization structure was preserved after multiple cycles, the acid amount and acid strength of the catalyst reduced gradually as the increas- ing of recycling times. Ó 2011 Elsevier Ltd. All rights reserved. 1. Introduction Industrially, levulinate esters were mainly obtained through esterification of levulinic acid with alkyl alcohols in the presence Due to gradual diminishment of fossil fuel reserves and progres- of sulfuric acid that leads to a high yield of products [9]. Immobi- sive depravation of environmental quality, the development of lized lipases as the biocatalyst for this process can also be equally renewable biomass energy invites more and more concerns [1]. effective under milder reaction conditions [5,10]. However, levu- In recent decades, extensive research is being carried out world- linic acid as raw material for this purpose is of high cost with its wide to convert cellulosic biomass into liquid fuels and high- present production from the acid hydrolysis of cellulose and sug- quality chemicals and to develop economically feasible processes ars. Recently, Mascal and Nikitin [11] had developed a new and on an industrial scale [2–4], among which the preparation of levu- efficient procedure for the conversion of cellulosic biomass into linate esters have been one of the focuses under study. Levulinate levulinate esters in overall yields exceeding 80% through two reac- esters, like methyl levulinate, ethyl levulinate, and butyl levulinate, tion steps: biomass reacted with hydrochloric acid into 5-(chloro- are a kind of short chain fatty esters with their properties similar to methyl)furfural followed by the alcoholysis of resulting product the biodiesel fatty acid methyl esters (FAME) [5,6]. These esters are with alcohols. However, the intermediates obtained from biomass suitable to be used as additives for gasoline and diesel of transpor- must be isolated before the subsequent process for all above tation fuels, which have manifold excellent performances, such as routes, the isolation procedure which requires the use of some non-toxic, high lubricity, flashpoint stability and better flow prop- energy consuming technique (distillation) or of environmentally erties under cold condition [7]. On the other hand, levulinate esters non-friendly solvents. Direct production of levulinate esters from also can either be used in the flavoring and fragrance industries or biomass or biomass-based sugars is also possible by the acid-cata- as substrates for various kinds of condensation and addition reac- lyzed reaction with alcohols, which is economically more attrac- tions at the ester and keto groups in organic chemistry [8]. tive, has yet to be developed. The generally accepted reaction pathway for the direct conversion of cellulose to levulinate esters is schematically given in Fig. 1 [8,12]. Compared with the numerous reactions studied in aqueous ⇑ Corresponding author. Tel./fax: +86 20 22236719. solvent for the making of chemicals [13], the reaction system in E-mail address: [email protected] (L. Lin). alcohols media has some advantages, for example, minimized 0306-2619/$ - see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.apenergy.2011.05.049 L. Peng et al. / Applied Energy 88 (2011) 4590–4596 4591 OH OH OH OH +ROH O OH O O HO HO O HO OH H2O HO HO O HO O HO OR OH O OH O H+ OH OH OH n Cellulose Alkyl glucoside + H 3H2O O O +ROH +H O OHC O 2 OR H3C R + HCOOR O H+ Levulinate ester Formate ester 5-alkoxymethylfurfural Fig. 1. Reaction pathway for the acid-catalyzed conversion of cellulose to levulinate esters. wastewater discharged and higher-grade products easily isolated 2. Experimental by fractionation. Process development for conversion of biomass into biofuels and high-value chemicals in sub- and supercritical 2.1. Catalysts preparation alcohols has been largely studied in recent years [14,15]. There 2À 2À have also been several reports about the production of levulinate SO4 /ZrO2 and SO4 /TiO2 were prepared by precipitation and esters in near-critical alcohols from carbohydrates biomass, such impregnation method, and the detailed procedure was presented as sucrose, glucose, fructose and biomass feedstocks including elsewhere [32]. Other solid acid catalysts were obtained commer- wood, bagasse, wheat meal and agricultural wastes [8,12,16,17]. cially. As for zeolites, ZSM-5, H-mordenite and NaY were from the For example, Le Van Mao et al. [18] most recently developed a Catalyst Plant of Nankai University. TiO2 was obtained from one-pot system for the direct catalytic conversion of cellulosic Aladdin Reagent. Zr3(PO4)4 was purchased from Xiamen Xindakang biomass into alkyl levulinates and other esters, and the product Inorganic Materials Co. Ltd. All catalysts were calcined at 773 K for extraction. In these studies, a homogeneous acid (H2SO4) was most 3 h in static air prior to use. commonly employed as the catalyst, since it is relatively cheap and also very active. However it suffers from several obvious draw- 2.2. Catalytic reaction procedure backs, such as equipment corrosion, side reaction for the inter- molecular dehydration of the massive alcohols to ether and the The experiments were carried out in a cylindrical stainless steel requirement of special processing for the neutralization of spent pressurized reactor with inner diameter 33 mm, depth 117 mm H SO [19,20]. Owing to the existence of these problems, it is ex- 2 4 and 100 mL total volume made by PARR instrument company, tremely important and necessary to develop an environmentally USA. The reactor was heated in an adjustable electric stove. The benign catalyst with high activity for the direct production of lev- temperature of the reactor contents was monitored by a thermo- ulinate esters. couple connected to the reactor. For each experiment, carbohy- In recent years, solid acid catalysts have attracted considerable drate (2.5 g), methanol (50 mL), and a given amount of solid acid interests as heterogeneous catalysts, which can overcome the above catalyst were mixed to form a suspension and were poured into mentioned some disadvantages of the inorganic acid in acid cataly- the reactor. The reactor was then brought to the desired tempera- sis and have been broadly applied to catalyze dehydration, alkyl- ture by external heating and shaken at 500 rpm. After certain reac- ation, cracking, isomerization, esterification, acylation, and so on tion time, the reactor was taken from the stove and quenched in an [21–26]. The conversion of cellulose in supercritical methanol ice cool water bath to terminate the reaction. The liquid substance (573 K/10 MPa) in the presence of solid acid catalysts has been re- and solid acid catalyst were separated by filtration, and then ana- ported, giving a 20% yield of methyl levulinate over Cs H PW O x 3Àx 12 40 lyzed. To test the catalyst stability, SO2À/TiO catalyst was recov- and sulfated zirconia [27]. However, minimal attention has been gi- 4 2 ered and reused without any treatment in a new reaction cycle ven to the use of solid acid catalysts to replace conventional H SO 2 4 under the same reaction conditions described above. In another for the direct synthesis of levulinate esters in near-critical methanol. run, prior to each reuse, the recovered catalyst was calcined at Presently, commercially available heterogeneous acid catalysts 773 K for 3 h in static air.
Recommended publications
  • Rigid Biobased Building Blocks: Current Developments and Outlook
    Rigid Biobased Building Blocks: Current Developments and Outlook Daan S. van Es Wageningen UR Food &Biobased Research, Wageningen, The Netherlands Received October 15, 2012; Accepted November 12, 2012 ABSTRACT: In this perspectives paper we will look at the state-of-the-art in rigid renewable building blocks for biobased materials, with a focus on two types of carbohydrate-based difunctional monomers, i.e.,isohexides and furan- 2,5-dicarboxylic acid (FDCA). KEYWORDS: Biobased building blocks, FDCA, isohexides, polymers 1 INTRODUCTION (i.e. high purity) aromatic monomers from lignin is not likely in the short term [3]. Whereas in the case of lignin The continuously increasing interest in biomass and the challenges are mostly chemical and technological, biobased materials is fuelled by growing concerns the use of, e.g., terpenes as feedstock for the produc- about fossil feedstock depletion, as well as greenhouse tion of aromatics is severely hampered by the limited gas emissions and global warming. Whereas most of availability compared to the potential demand. Since the current focus is on using terrestrial vegetable bio- carbohydrates (C6 and C5 sugars) are abundantly mass as alternative feedstock for energy carriers (e.g. available they are the most likely candidates as feed- transportation fuels) and chemicals production, aquatic stock for the production of bulk (platform) chemicals biomass (e.g. micro- and macroalgae) is also being for materials production. Basically two approaches can explored as a renewable feedstock source. A success- be distinguished in the transition towards a biobased ful transition from a fossil-feedstock-based economy to (i.e. carbohydrate based) economy; transformation of a biobased economy can only be achieved sustainably biomass feedstocks to existing (fossil based) chemicals, if there is no competition with food and feed produc- also known as drop-in, or transformation of biomass to tion, and negative effects of (indirect) land use change “new” chemicals.
    [Show full text]
  • PRODUCTION of ETHYL LEVULINATE VIA ESTERIFICATION REACTION of LEVULINIC ACID in the PRESENCE of Zro2 BASED CATALYST
    Malaysian Journal of Analytical Sciences, Vol 23 No 1 (2019): 45 - 51 DOI: https://doi.org/10.17576/mjas-2019-2301-06 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society PRODUCTION OF ETHYL LEVULINATE VIA ESTERIFICATION REACTION OF LEVULINIC ACID IN THE PRESENCE OF ZrO2 BASED CATALYST (Penghasilan Etil Levulinat Melalui Pengesteran Asid Levulinik dengan Kehadiran Mangkin Berasaskan ZrO2) Dorairaaj Sivasubramaniam1, Nor Aishah Saidina Amin1*, Khairuddin Ahmad1, Nur Aainaa Syahirah Ramli2 1Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia 2Advanced Oleochemical Technology Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia *Corresponding author: [email protected] Received: 13 April 2017; Accepted: 17 April 2018 Abstract Ethyl levulinate is widely used as a fuel additive, flavor or fragrance and as a component of fuel blending. This study focused on the production of ethyl levulinate from levulinic acid via esterification reaction in the presence of HPW/ZrO2.The catalyst was prepared using the wet impregnation method, characterized by using FTIR, BET and NH3-TPD and screened based on 20%, 40% and 60% HPW/ZrO2. The 40% HPW/ZrO2 catalyst exhibited the highest catalytic performance during the parameter screening stage which included catalyst loading (0.25‒1.25g) and volume ratio of levulinic acid to ethanol (1:4 – 1:8). The highest ethyl levulinate yield of 99% corresponded to a catalyst loading of 0.5 g and volume ratio of levulinic acid to ethanol of 1:5 with reaction conditions at 150 °C for 3 hours.
    [Show full text]
  • WO 2017/003293 Al 5 January 2017 (05.01.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/003293 Al 5 January 2017 (05.01.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 307/50 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/NL20 16/050469 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 1 July 20 16 (01 .07.2016) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 2015065 1 July 2015 (01.07.2015) NL (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: FURANIX TECHNOLOGIES B.V. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [NL/NL]; 29, Zekeringstraat, 1014 BV Amsterdam (NL).
    [Show full text]
  • Valerolactone Using Polymer-Based Metal-Containing Catalysts, Chemical Engineering Transactions, 61, 895-900 DOI:10.3303/CET1761147 896
    895 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright © 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8; ISSN 2283-9216 DOI: 10.3303/CET1761147 Hydrogenation of Biomass-Derived Levulinic Acid to Gamma- Valerolactone Using Polymer-Based Metal-Containing Catalysts Linda Zh. Nikoshvili*, Igor I. Protsenko, Dialia A. Abusuek, Anna O. Zaykovskaya, Alexey V. Bykov, Valentina G. Matveeva, Esther M. Sulman Tver Technical University, A.Nikitina str. 22, 170026, Tver, Russian Federation [email protected] Nowadays the development of effective catalytic systems of selective hydrogenation of levulinic acid (LA) to gamma -valerolactone (GVL) is of high importance. However, there is a lack of data concerning the use of polymer -based catalyst in this process. The possibility to use of Ru-containing catalysts on the basis of hypercrosslinked polystyrene (HPS) in hydrogenation of LA to GVL is discussed. Catalyst 5%-Ru/HPS is shown to be highly active and selective in hydrogenation of LA in aqueous medium (yield of GVL more than 99%) at mild reaction conditions (90 °C, 2 MPa of hydrogen partial pressure) and the absence of co-catalysts. 1. Introduction Global petro-chemical market faces increasing competition and a dependency on external sources, and is under considerable cost and ecological pressure. Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy, especially for the transportation sector.
    [Show full text]
  • Safety Assessment of Levulinic Acid and Sodium Levulinate As Used in Cosmetics
    Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: February 16, 2021 Panel Meeting Date: March 11-12, 2021 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. Previous Panel member involved in this assessment: James G. Marks, Jr., M.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Preethi S. Raj, M.Sc., Senior Scientific Analyst/Writer, CIR. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons From: Preethi S. Raj, M.Sc. Senior Scientific Analyst/Writer, CIR Date: February 16, 2021 Subject: Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics Enclosed is the Draft Tentative Report of the Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics (identified as levaci032021rep in the pdf). This is the second time the Panel is seeing a safety assessment of these cosmetic ingredients. At the September 2020 Panel Meeting, the Panel issued an Insufficient Data Announcement (IDA), and the following data were requested.
    [Show full text]
  • 3 in Methyl Levulinate Production from Biomass Carbohydrates
    ARTICLE IN PRESS JID: JECHEM [m5G; November 9, 2017;20:14 ] Journal of Energy Chemistry xxx (2017) xxx–xxx Contents lists available at ScienceDirect Journal of Energy Chemistry http://www.journals.elsevier.com/ journal-of-energy-chemistry/ journal homepage: www.elsevier.com/locate/jechem Catalysis performance comparison of a Brønsted acid H 2 SO 4 and a Lewis acid Al 2 (SO 4 ) 3 in methyl levulinate production from biomass carbohydrates ∗ Q1 Xueli Chen, Yuxuan Zhang, Tao Hou, Lujia Han, Weihua Xiao College of Engineering, China Agricultural University, Beijing 10 0 083, China a r t i c l e i n f o a b s t r a c t Article history: An experimental investigation was conducted to understand the roles of the Brønsted acid H 2 SO 4 and Received 5 July 2017 Lewis acid Al (SO ) in methyl levulinate (ML) production from biomass carbohydrates, including glucose, 2 4 3 Revised 5 November 2017 fructose and cellulose. The product distributions with different catalysts revealed that the Lewis acid was Accepted 6 November 2017 responsible for the isomerization of methyl glucoside (MG), producing a significant amount of the subse- Available online xxx quent product 5-methoxymethylfurfural (MMF), while the Brønsted acid facilitated the production of ML Keywords: from MMF. Al 2 (SO 4 ) 3 was efficient for monosaccharide conversion but not for cellulose. Using ball-milled Carbohydrates cellulose with Al 2 (SO 4 ) 3 resulted in a desired ML yield within a reasonable reaction time. The significant Brønsted acid catalysis performances of two types of acids will guide the design of efficient catalytic processes for the Lewis acid selective conversion of biomass into levulinate esters.
    [Show full text]
  • Supplementary Information Experimental Products (Furfurals) Were Calculated by Comparison with an Internal Standard Solvent As the Reference Sample (N-Octanol)
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Experimental products (furfurals) were calculated by comparison with an internal standard solvent as the reference sample (n-octanol). Chemicals The MLA and n-octanol relevant line equation is For this study, bamboo particles was collected from a local y=2.06543x–0.02107 (coefficient of correlation R2 =0.9998), farm in Jiangsu Province, China. All materials were passed the intermediate products (such as MMF) and n-octanol through a 250–425 μm sieve and dried to a constant weight for relevant line equation is y=1.9657x+0.0612 (coefficient of 24 h at 105 °C. The absolute-dried particles were kept in a correlation R2 = 0.9996). desiccator until used. The High Performance Liquid Chromatography HPLC instrument (Shimadzu LC–10ATVP, Aminex HPX–87H column) Analytic methods with a RID-20A detector was used to quantitative analyzed the Gas chromatography (GC) mass spectrometry (MS) (Agilent methyl pentose glycosides (C5-Gly) and methyl hexose 5975C VL MSD) analysis was used a HP-5 fused capillary glucosides (C6-Gly). Used 0.005 mmol sulfuric acid (sonication, column (l= 30 m, i d= 0.32 mm, t= 0.25 μm) with poly dimethyl deaeration) in water as the mobile phase and the flow rate siloxane with 5% phenyl methyl substitution as the stationary was of 0.5 mL/min, and the column temperature was kept at phase. The injection mode was split at a rate of 35. The carrier 45 °C for 30 min. The standard curve of concentration of −1 gas was He at a flow rate of 1.5 mL min .
    [Show full text]
  • Microwave Assisted Synthesis of Dehydrated Sugar Derivatives Hydroxymethylfurfural, Levulinic Acid, Anhydrosugar Alcohols, and E
    (19) TZZ _T (11) EP 2 598 466 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 51/00 (2006.01) C07D 307/02 (2006.01) 28.09.2016 Bulletin 2016/39 C07C 67/00 (2006.01) C07D 307/93 (2006.01) C07D 493/04 (2006.01) C07D 307/46 (2006.01) (2006.01) (2006.01) (21) Application number: 11812946.9 C07D 307/48 C07D 307/50 C07C 59/185 (2006.01) (22) Date of filing: 18.07.2011 (86) International application number: PCT/US2011/044324 (87) International publication number: WO 2012/015616 (02.02.2012 Gazette 2012/05) (54) MICROWAVE ASSISTED SYNTHESIS OF DEHYDRATED SUGAR DERIVATIVES HYDROXYMETHYLFURFURAL, LEVULINICACID, ANHYDROSUGAR ALCOHOLS, AND ETHERS THEREOF MIKROWELLENUNTERSTÜTZTE SYNTHESE VON DEHYDRIERTEN ZUCKERDERIVATEN, HYDROXYMETHYLFURFURAL, LÄVULINSÄURE, ANHYDROZUCKERALKOHOLEN SOWIE DEREN ETHERN SYNTHÈSE ASSISTÉE PAR RAYONNEMENT MICROONDES DES DÉRIVÉS DE SUCRES DÉSHYDRATÉS HYDROXYMÉTHYLFURFURAL, ACIDE LÉVULINIQUE, ALCOOLS DE SUCRE ANHYDRES ET LEURS ÉTHERS (84) Designated Contracting States: (74) Representative: dompatent von Kreisler Selting AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Werner - GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Partnerschaft von Patent- und Rechtsanwälten PL PT RO RS SE SI SK SM TR mbB Deichmannhaus am Dom (30) Priority: 30.07.2010 US 369350 P Bahnhofsvorplatz 1 50667 Köln (DE) (43) Date of publication of application: 05.06.2013 Bulletin 2013/23 (56) References cited: WO-A2-2009/155020 US-A- 5 558 899 (73) Proprietor: Archer-Daniels-Midland Company US-A1- 2007 213 544 US-A1- 2007 213 544 Decatur, IL 62526 (US) US-A1- 2009 156 841 US-A1- 2009 156 841 US-A1- 2009 253 920 US-A1- 2009 281 338 (72) Inventors: • HOWARD, Stephen J.
    [Show full text]
  • Hydrogenation of 2-Methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-2020 Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts Matthew J. Kline University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Catalysis and Reaction Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Kline, Matthew J., "Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts" (2020). Electronic Theses and Dissertations. 3284. https://digitalcommons.library.umaine.edu/etd/3284 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR OVER BIFUNCTIONAL NICKEL CATALYSTS By Matthew J. Kline B.S. Seton Hill University, 2018 A THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master oF Science (in Chemical Engineering) The Graduate School The University of Maine December 2020 Advisory Committee: M. Clayton Wheeler, Professor of Chemical Engineering, Advisor Thomas J. Schwartz, Assistant ProFessor oF Chemical Engineering William J. DeSisto, ProFessor oF Chemical Engineering Brian G. Frederick, ProFessor oF Chemistry
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,350,056 B2 FOO Et Al
    USOO835.0056B2 (12) United States Patent (10) Patent No.: US 8,350,056 B2 FOO et al. (45) Date of Patent: *Jan. 8, 2013 (54) FUNCTIONALIZED N-SUBSTITUTED 2010, 0140166 A1* 6, 2010 Erdner-Tindall et al. ..... 210,603 2010.0143992 A1* 6, 2010 Erdner-Tindall et al. ..... 435,160 PYRROLIDONIUM IONIC LIOUIDS 2010.0143993 A1* 6, 2010 Erdner-Tindall et al. ..... 435,160 2010.0143994 A1* 6, 2010 Erdner-Tindall et al. ..... 435,160 (75) Inventors: Thomas Foo, Wilmington, DE (US); 2010.0143995 A1 6, 2010 Erdner-Tindall et al. ..... 435,160 Mark Andrew Harmer, Landenberg, 2010.0143999 A1* 6, 2010 Erdner-Tindall et al. ..... 435,161 2010/0.144000 A1* 6, 2010 Erdner-Tindall et al. ..... 435,161 PA (US); Keith W. Hutchenson, Lincoln 2010, 0145073 A1 6, 2010 Foo University, PA (US); Christopher P. 2010, O152465 A1 6, 2010 Davis Junk, Wilmington, DE (US); Berlyn R. Mellein, Wilmington, DE (US); Aaron FOREIGN PATENT DOCUMENTS Minter, Wilmington, DE (US) WO O3O48078 A2 6, 2003 WO 201OO65816 6, 2010 WO 201OO65841 6, 2010 (73) Assignee: E I du Pont de Nemours and WO 2010.065873 6, 2010 Company, Wilmington, DE (US) WO WO 2010.065606 A2 * 6, 2010 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Cardoso et al., Synthesis, Characterization, and Thermal and Dielec U.S.C. 154(b) by 136 days. tric Properties of Three Different Methacrylate Polymers With Zwit terionic Pendant Groups, J. Polymer Sci., Part B: Polymer Physics, This patent is Subject to a terminal dis 1997, vol.
    [Show full text]
  • Conversion of Furfuryl Alcohol Into Ethyl Levulinate Over Glucose-Derived Carbon-Based Solid Acid in Ethanol
    molecules Article Conversion of Furfuryl Alcohol into Ethyl Levulinate over Glucose-Derived Carbon-Based Solid Acid in Ethanol Geng Zhao 1,*, Ming Liu 1, Xinkui Xia 2, Li Li 1 and Bayin Xu 1 1 Analysis and Testing Center, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, Henan, China; [email protected] (M.L.); [email protected] (L.L.); [email protected] (B.X.) 2 College of Food Science, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China; [email protected] * Correspondence: [email protected]; Tel.: +86-376-639-3155 Received: 27 March 2019; Accepted: 15 May 2019; Published: 16 May 2019 Abstract: In this study, a carbon-based solid acid was created through the sulfonation of carbon obtained from the hydrothermal pretreatment of glucose. Additionally, ethyl levulinate, a viable liquid biofuel, was produced from furfuryl alcohol using the environmentally benign and low-cost catalyst in ethanol. Studies for optimizing the reaction conditions, such as reaction time, temperature, and catalyst loading, were performed. Under the optimal conditions, a maximum ethyl levulinate yield of 67.1% was obtained. The recovered catalyst activity (Ethyl levulinate yield 57.3%) remained high after being used four times, and it was easily regenerated with a simple sulfonation process. Moreover, the catalyst was characterized using FT-IR, XRD, SEM, elemental analysis, and acid-base titration techniques. Keywords: furfuryl alcohol; ethanol; ethyl levulinate; carbon-based solid acid 1. Introduction Because of the recent diminishment of fossil fuel resources, as well as environmental degradation resulting from greenhouse gas emissions, significant effort has been devoted to converting renewable biomass into liquid fuels, fuel additives, and organic bulk chemicals [1–3].
    [Show full text]
  • Valerolactone from Biomass-Derived Levulinic Acid Over Zr–Al-Beta Zeolite Catalyst
    catalysts Article Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst Clara López-Aguado 1, Marta Paniagua 1 , Juan A. Melero 1 , Jose Iglesias 1 , Pablo Juárez 1, Manuel López Granados 2 and Gabriel Morales 1,* 1 Chemical and Environmental Engineering Group, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, E28933 Madrid, Spain; [email protected] (C.L.-A.); [email protected] (M.P.); [email protected] (J.A.M.); [email protected] (J.I.); [email protected] (P.J.) 2 Energy and Sustainable Chemistry (EQS) Group, Institute of Catalysis and Petrochemistry, CSIC, Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-488-80-91 Received: 20 May 2020; Accepted: 15 June 2020; Published: 17 June 2020 Abstract: The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe the transfer hydrogenation of LA to GVL using isopropanol as a hydrogen donor over a Zr-modified beta zeolite catalyst in a continuous fixed-bed reactor. A stable sustained production of GVL was achieved from the levulinic acid, with both high LA conversion (ca. 95%) and GVL yield (ca. 90%), for over at least 20 days in continuous operation at 170 ◦C. Importantly, the small decay in activity can be advantageously overcome by the means of a simple in situ thermal regeneration in the air atmosphere, leading to a complete recovery of the catalyst activity.
    [Show full text]