Behaviour and Ecology of Pomacea Canaliculata from Southern Pampas (Argentina)

Total Page:16

File Type:pdf, Size:1020Kb

Behaviour and Ecology of Pomacea Canaliculata from Southern Pampas (Argentina) Behaviour and ecology of Pomacea canaliculata from Southern Pampas (Argentina) Pablo R. Martín, María E. Seuffert, Nicolás E. Tamburi, Silvana Burela and Lucía Saveanu Laboratorio de Ecología, Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. E-mail:[email protected], [email protected], [email protected], [email protected], lsaveanu@ conicet.gov.ar Abstract Pomacea canaliculata is in many respects the best known species of apple snails (family Ampullariidae), although the available information is both fragmentary and geographically biased. Most studies in its non-native range have focused on applied aspects in managed or artificial wetlands in various countries in SoutheastAsia. In its natural range the emphasis has been on basic studies of its reproductive biology, ecology and behaviour in populations from small streams at the southernmost extreme of its distribution (Southern Pampas, Argentina). The extreme geographic position and the lotic nature of these populations may have biased some conclusions about the behavioural and ecological traits of P. canaliculata; contemporary evolution and genetic exchange may also have diversified these traits in the non-native range. Even though the ecological information from native populations may not be directly applicable elsewhere, it nevertheless remains as a necessary reference to understand the full potential of adaptation and spread of P. canaliculata to new environments around the world. Surprisingly enough, comparative studies of native and non-native populations of Pomacea spp. are almost lacking. This short review focuses on the distribution, thermal biology, aerial respiration, feeding, reproduction, phenotypic plasticity and shell shape of Pomacea canaliculata in its native range in Argentina. Additional keywords: Ampullariidae, distribution, feeding, life-history, Mollusca, phenotypic plasticity, respiration, thermal biology, shell shape 241 Introduction In many respects Pomacea canaliculata is the best known species in the species-rich family Ampullariidae. Most of the interest in this species in recent decades has been spurred by its fast spread and major ecological and agricultural impacts outside its native range (Cowie, 2002; Joshi & Sebastian, 2006; Horgan et al., 2014). The IUCN Invasive Species Specialist Group listed P. canaliculata among 100 of the World’s Worst Invasive Alien Species (Lowe et al., 2000) because of its serious impacts, but it is also as an illuminating example of patterns and processes in biological invasions. The publication of ecological studies on this species in its non-native range have flourished in the 21st century; however, several of these studies erroneously or dubiously identified P. canaliculata as their object of study, probably because of the unnoticed presence of other alien Pomacea spp. and a mostly shell-based taxonomy (Cowie et al., 2006; Hayes et al., 2012, 2015). Fig. 1. A section of the Pigué stream, one of the long streams inhabited by Pomacea canaliculata in the plains of the Encadenadas del Oeste basin (Buenos Aires province, Argentina). (Photo: S. Burela) 242 BIOLOGY AND MANAGEMENT OF INVASIVE APPLE SNAILS Most studies in the non-native range have focused on applied aspects of the ecology of P. canaliculata and other Pomacea spp. in managed or artificial wetlands. In the natural range of P. canaliculata (Río de la Plata basin, South America; Hayes et al., 2012), in contrast, the emphasis has been on basic studies of its reproductive biology, ecology and behaviour in natural habitats. Ecological studies of apple snails in the Pampas region, Argentina, from which apparently most Pomacea invaders have originated (Hayes et al., 2008, 2012; Lv et al., 2013), have concentrated on P. canaliculata (reviewed by Estebenet & Martín, 2002). The aim of this contribution is to review the research done since around 2002 on the behaviour and ecology of P. canaliculata in Southern Pampas and to highlight those aspects that may be useful to understand, predict and control the invasions as well as to understand the ecological and agricultural impacts in the non-native range. Determinants of distribution The natural range of P. canaliculata extends from the Río de la Plata basin southwards to the Encadenadas del Oeste basin in Southern Pampas (37°S, Buenos Aires Province, Argentina), making it the southernmost apple snail in the world (Martín et al., 2001). Factors determining the presence and abundance of P. canaliculata in lotic and lentic waterbodies at its southernmost limit have been studied at different spatial scales. It is generally found in shallow, quiet and turbid sites with low Na+/(K++ + Mg++) ratios (Martín et al., 2001). The arid conditions in western Buenos Aires Province and the high salinity and temporary nature of most waterbodies probably limit its expansion westwards. On the other hand, the main factor that limits its southward spread has been the hydrological barrier imposed by the Tandilia and Ventania Mountains of southern Buenos Aires Province and not temperature (Martín et al., 2001; Martín & De Francesco, 2006). The upper reaches of streams (altitudes and slopes higher than 230 m above sea level and 3.2 %, respectively) arising from the Tandilia and Ventania Mountains are mostly uninhabited by P. canaliculata (Martín et al., 2001, Seuffert & Martín, 2013a). Heavy rains in the steeper headwater sections result in floods that sometimes eradicate P. canaliculata populations, making headwaters unfavourable habitats for their mid and long term persistence. In the plains of the Encadenadas del Oeste basin, P. canaliculata is generally found in the long streams arising from the Ventania Mountains (Fig. 1), while the short streams BEHAVIOUR AND ECOLOGY OF POMACEA CANALICULATA FROM SOUTHERN PAMPAS (ARGENTINA) 243 that arise from springs in the plains are rarely inhabited (Seuffert & Martín, 2013a). In long streams, P. canaliculata is most frequently recorded in places close to the shore, with low current velocities, fine sediments rich in organic matter and abundance of submersed macrophytes. The association with microhabitats in proximity to the shore or with available emergent substrata is due in part to the need to ventilate the lung periodically (Seuffert & Martín, 2009, 2010). Short streams are characterized by higher conductivities, more alkaline pH, very low or zero current velocities and the absence of trees on the margins (Seuffert & Martín 2013a); during hot summer days water temperatures are high enough to induce snail inactivation (Seuffert et al., 2010). Evidence from two sink populations showed that P. canaliculata can survive and reproduce in the short streams, although these streams are not suitable for long term persistence of the populations. Knowledge of the determinants of the distribution of P. canaliculata in its natural realm is necessary to predict its potential habitat range in invaded areas and for an efficient design of barriers to its spread. However, unpredictable variation in climatic and hydrological conditions generates stochastic patterns of extinction-colonization that blur the relationships between snail abundance and environmental factors (Seuffert & Martín, 2013a). A metapopulational approach seems necessary to fully understand and predict the distribution of this snail in its natural and invaded ranges. Thermal biology The activity of P. canaliculata decreases sharply below water temperatures of 15 °C, and the snails are totally inactive at 10 °C. Activity levels also decrease above 30 °C, especially in poorly aerated or fouled waters (Seuffert & Martín, 2010). Crawling speed increases linearly with temperature, but the time spent crawling is nearly constant. The time spent feeding increases with temperature between 10 and 25 °C but drops at higher temperatures (Seuffert et al., 2010). Juvenile growth rates increase with temperature from 15 to 25 °C but do not show a further increase up to 35 °C, probably because of the decline in feeding time and the increase in metabolic rates (Seuffert & Martín, 2013b). The duration of incubation of the aerial egg masses of P. canaliculata is highly dependent on air temperature (Pizani et al., 2005). The lower threshold for embryonic development is around 16 °C, while the cumulative degree-days until hatching range between 120 and 132 (Seuffert et al., 2012). The egg masses of P. canaliculata have 244 BIOLOGY AND MANAGEMENT OF INVASIVE APPLE SNAILS been the target of various chemical and mechanical control methods (Wang et al., 2012). Degree-day models of egg development coupled with field temperature data can be used to predict time required to hatch and thereby to optimize the frequency and timing of the application of control methods to improve their effectiveness (Seuffert et al., 2012). At the southernmost limit of its distribution (37ºS), P. canaliculata remains inactive during the five or six colder months but does not fall into deep dormancy, as the snails soon become active if water temperature rises (Seuffert et al., 2010). Even though P. canaliculata can survive in somewhat colder regions (Colorado river, 39.5°S; Martín et al., 2001), low temperatures are probably one of the main impediments to its expansion to higher latitudes in invaded areas. Behaviour in flowing water Pomacea canaliculata has traditionally been considered a lentic dweller but it also thrives in lotic systems (Martín et al.,
Recommended publications
  • First Report of the Invasive Snail Pomacea Canaliculata in Kenya Alan G
    Buddie et al. CABI Agric Biosci (2021) 2:11 https://doi.org/10.1186/s43170-021-00032-z CABI Agriculture and Bioscience RESEARCH Open Access First report of the invasive snail Pomacea canaliculata in Kenya Alan G. Buddie1* , Ivan Rwomushana2 , Lisa C. Oford1 , Simeon Kibet3, Fernadis Makale2 , Djamila Djeddour1 , Giovanni Cafa1 , Koskei K. Vincent4, Alexander M. Muvea3 , Duncan Chacha2 and Roger K. Day2 Abstract Following reports of an invasive snail causing crop damage in the expansive Mwea irrigation scheme in Kenya, samples of snails and associated egg masses were collected and sent to CABI laboratories in the UK for molecular identifcation. DNA barcoding analyses using the cytochrome oxidase subunit I gene gave preliminary identifcation of the snails as Pomacea canaliculata, widely considered to have the potential to be one of the most invasive inver- tebrates of waterways and irrigation systems worldwide and which is already causing issues throughout much of south-east Asia. To the best of our knowledge, this is the frst documented record of P. canaliculata in Kenya, and the frst confrmed record of an established population in continental Africa. This timely identifcation shows the beneft of molecular identifcation and the need for robust species identifcations: even a curated sequence database such as that provided by the Barcoding of Life Data system may require additional checks on the veracity of the underlying identifcations. We found that the egg mass tested gave an identical barcode sequence to the adult snails, allowing identifcations to be made more rapidly. Part of the nuclear elongation factor 1 alpha gene was sequenced to confrm that the snail was P.
    [Show full text]
  • Applesnails of Florida Pomacea Spp. (Gastropoda: Ampullariidae) 1 Thomas R
    EENY323 Applesnails of Florida Pomacea spp. (Gastropoda: Ampullariidae) 1 Thomas R. Fasulo2 Introduction in the northern tier of Florida counties and northward except where the water is artificially heated by industrial Applesnails are larger than most freshwater snails and can wastewater or in warm springs. It occurs as far west as be separated from other freshwater species by their oval the Choctawhatchee River. It is easily distinguished from shell that has the umbilicus (the axially aligned, hollow, other applesnails in Florida by the low, strongly rounded cone-shaped space within the whorls of a coiled mollusc shell spike, and measures about 40–70 mm (Capinera and shell) of the shell perforated or broadly open. There are four White 2011). species of Pomacea in Florida, one of which is native and considered beneficial (Capinera and White 2011). Species Found in Florida Of the four species of applesnails in Florida, only the Florida applesnail is a native species, while the other three species are introduced. All are tropical/subtropical species in the genus Pomacea, and are not known to withstand water temperatures below 10°C (FFWCC 2006). • Pomacea paludosa (Say 1829), the Florida applesnail, occurs throughout peninsular Florida (Thompson 1984). Based on fossil finds, it is a native snail that has existed in Florida since the Pliocene. It is also native to Cuba and Hispaniola (FFWCC 2006). Collections have been made in Alabama, Georgia, Hawaii, Louisiana, Oklahoma and South Carolina (USGS 2006). It is the principal Figure 1. Florida applesnail, Pomacea paludosa (Say 1829). food of the Everglades kite, Rostrhamus sociabilis Credits: Bill Frank, http://www.jacksonvilleshells.org plumbeus Ridgway, and should be considered beneficial.
    [Show full text]
  • Pomacea Canaliculata (Lamarck, 1822)
    Pomacea canaliculata (Lamarck, 1822) Diagnostic features Distinguished from Pomacea diffusa by its larger sized shell (up to 75 mm in height) and deeply channelled suture. Animal with distinctive head-foot; snout uniquely with a pair of Pomacea canaliculata (adult size up to 75 mm in height) Characteristic pink egg mass, commonly laid on vegetation. distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Pomacea canaliculata (Lamarck, 1822) Common name: Golden apple snail Class Gastropoda I nfraclass Caenogastropoda I nformal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Original name: Ampullaria canaliculata Lamarck, 1822. Lamarck, J. B. P. A. de M. de (1822). Histoire naturelle des animaux sans vertèbres Tome sixième.LĘauteur, Paris. 1-232 pp. Type locality: Laguna Guadeloupe ? Santa Fe, Argentina (as ėRivierès de la Guadeloupe) Biology and ecology This species lives on sediment and on aquatic and semi-aquatic vegetation. t lays pink coloured egg masses on plants above the waterline. t has become a major pest of aquatic crops as it eats living plants including rice and taro crops. Distribution ntroduced from South America into the southern United States, East Asia, islands of the ndian Ocean and New Guinea. Notes This pest species has not as yet entered Australia, but ought to be considered a significant risk due to its presence as an invasive in the adjacent ndo-west Pacific region. Two other south Asian ampullariid species have regularly been intercepted by Australian Biosecurity ĕ they are Pila ampullacea (Linnaeus, 1758) and Pila globosa (Swainson, 1822).
    [Show full text]
  • Symbionts and Diseases Associated with Invasive Apple Snails
    Symbionts and diseases associated with invasive apple snails Cristina Damborenea, Francisco Brusa and Lisandro Negrete CONICET, División Zoología Invertebrados, Museo de La Plata (FCNyM-UNLP), Paseo del Bosque, 1900 La Plata, Argentina. Email: [email protected], fbrusa@ fcnym.unlp.edu.ar, [email protected] Abstract This contribution summarizes knowledge of organisms associated with apple snails, mainly Pomacea spp., either in a facultative or obligate manner, paying special attention to diseases transmitted via these snails to humans. A wide spectrum of epibionts on the shell and operculum of snails are discussed. Among them algae, ciliates, rotifers, nematodes, flatworms, oligochaetes, dipterans, bryozoans and leeches are facultative, benefitting from the provision of substrate, transport, access to food and protection. Among obligate symbionts, five turbellarian species of the genusTemnocephala are known from the branchial cavity, with T. iheringi the most common and abundant. The leech Helobdella ampullariae also spends its entire life cycle inside the branchial cavity; two copepod species and one mite are found in different sites inside the snails. Details of the nature of the relationships of these specific obligate symbionts are poorly known. Also, extensive studies of an intracellular endosymbiosis are summarized. Apple snails are the first or second hosts of several digenean species, including some bird parasites.A number of human diseases are transmitted by apple snails, angiostrongyliasis being the most important because of the potential seriousness of the disease. Additional keywords: Ampullariidae, Angiostrongylus, commensals, diseases, epibionts, parasites, Pomacea, symbiosis 73 Introduction The term “apple snail” refers to a number of species of freshwater snails belonging to the family Ampullariidae (Caenogastropoda) inhabiting tropical and subtropical regions (Hayes et al., 2015).
    [Show full text]
  • Pomacea Canaliculata) Behaviors in Different Water Temperature Gradients
    water Article Comparison of Invasive Apple Snail (Pomacea canaliculata) Behaviors in Different Water Temperature Gradients Mi-Jung Bae 1, Eui-Jin Kim 1 and Young-Seuk Park 2,* 1 Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea; [email protected] (M.-J.B.); [email protected] (E.-J.K.) 2 Department of Biology, Kyung Hee University, Dongdaemun, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0946 Abstract: Pomacea canaliculata (known as invasive apple snail) is a freshwater snail native to South America that was introduced into many countries (including Asia and North America) as a food source or for organic farming systems. However, it has invaded freshwater ecosystems and become a serious agricultural pest in paddy fields. Water temperature is an important factor determining behavior and successful establishment in new areas. We examined the behavioral responses of P. canaliculata with water temperature changes from 25 ◦C to 30 ◦C, 20 ◦C, and 15 ◦C by quantifying changes in nine behaviors. At the acclimated temperature (25 ◦C), the mobility of P. canaliculata was low during the day, but high at night. Clinging behavior increased as the water temperature decreased from 25 ◦C to 20 ◦C or 15 ◦C. Conversely, ventilation and food consumption increased when the water temperature increased from 25 ◦C to 30 ◦C. A self-organizing map (an unsupervised artificial neural network) was used to classify the behavioral patterns into seven clusters at different water temperatures. These results suggest that the activity levels or certain behaviors of P. canaliculata vary with the water temperature conditions.
    [Show full text]
  • And Type the TITLE of YOUR WORK in All Caps
    POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON (Under the Direction of Susan Bennett Wilde) ABSTRACT The Island apple snail, Pomacea insularum is a freshwater gastropod in the family Ampullaridae. It was introduced into the United States via the aquarium trade approximately 30 years ago and now has established reproducing populations in at least seven southeastern states. It is a highly invasive species with high rates of reproduction and consumption of native aquatic vegetation. A survey of reported Georgia populations confirmed that there are at least ten individual occurrences of exotic apple snails in the state, and that they have not reached their equilibrium distribution. We also investigated the ability of P. insularum to harbor a cyanotoxin that may be detrimental to its avian predator in Florida, the endangered Florida snail kite (Rostrhamus sociabilis). The invasive P. insularum transferred the undescribed cyanotoxin associated with Avian Vacuolar Myelinopathy to domestic chickens in a laboratory feeding study. INDEX WORDS: apple snail, Pomacea insularum, invasive species, Avian Vacuolar Myelinopathy, AVM, Florida snail kite, Rostrhamus sociabilis, Hydrilla verticillata POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON BS, University of Georgia, 2006 AB, University of Georgia, 2007 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2012 © 2012 Shelley Marie Robertson All Rights Reserved POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON Major Professor: Susan B.
    [Show full text]
  • Pomacea Urceus (Freshwater Conch Or Black Conch)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Pomacea urceus (Freshwater Conch or Black Conch) Superfamily: Ampullarioidea (Operculate Snails) Class: Gastropoda (Snails and Slugs) Phylum: Mollusca (Molluscs) Fig. 1. Freshwater conch, Pomacea urceus. [http://www.jaxshells.org/9006.htm, downloaded 19 March 2015] TRAITS. The black conch Pomacea urceus has a spherical or globe-like shell with a short spire (Fig. 1). It can range to 124-135mm in height and 115-125mm in width. Although often blackish, various colours such as yellow and olive green have added to the variety of the freshwater conch, with the inner lip of the shell being anywhere from red to white. The operculum (cover) is horny (Alderson, 2015). Four main structures of Pomacea urceus can be observed: the foot, visceral mass, mantle and the face. The foot is the soft muscular part that is used to move about. Its visceral mass houses the digestive apparatus and the pericardial cavity. The mantle has the function of secreting the shell and the face consist of two long tentacles, with the eyes being at their bases. UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Also present is a siphon, 2.5 times its body length. The sexes in this species are separate (Kondapalli, 2015). DISTRIBUTION. It is most common in tropical and subtropical South America (Fig. 2), including the Amazon and the Plata Basin, and has been introduced to Asia. It is also native to Trinidad and Tobago (Burky, 1974). HABITAT AND ACTIVITY. Freshwater conchs inhabit an extensive variety of ecosystems from marshes, trenches, lakes, ponds and rivers.
    [Show full text]
  • Pomacea Perry, 1810
    Pomacea Perry, 1810 Diagnostic features Large to very large globose smooth shells, sutures channelled (Pomacea canaliculata) or with the top of the whorl shouldered and flat at the suture (Pomacea diffusa). Shells umbilicate with unthickened lip. Uniform yellow to olive green with darker spiral bands. nterior of aperture orange to yellow. Operculate, with concentric operculum. Animal with distinctive head-foot; snout uniquely with a pair of distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Class Gastropoda Infraclass Caenogastropoda Informal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Type species: Pomacea maculata Perry, 1810 Original reference: Perry, G. 1810-1811. Arcana; or the Museum of Natural History, 84 pls., unnumbered with associated text. ssued in monthly parts, pls.[1-48] in 1810, [49-84] in 1811. Stratford, London. Type locality: Rio Parana, Argentina. Biology and ecology Amphibious, on sediment, weeds and other available substrates. Lays pink coloured egg masses on plants above the waterline. Distribution Native to North and South America but some species have been introduced around the world through the aquarium trade (Pomacea diffusa) and as a food source (Pomacea canaliculata). Pomacea diffusa has been reported from the Ross River in Townsville in NE Queensland, and from freshwater waterbodies in the greater Brisbane area, pswich and Urangan near Maryborough in SE Queensland. Notes This genus is widely known in the aquarium trade through the so-called mystery snail, Pomacea diffusa. n countries such as the Philippines, Hawaii and parts of SE Asia, the species Pomacea canaliculata (Lamarck) is a serious pest of rice crops.
    [Show full text]
  • Pomacea Species Plant Pest Factsheet
    Plant Pest Factsheet Apple snails Pomacea species Figure 1. Pomacea sp. pink eggs laid in batches above the water © Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya Background The water snail genus Pomacea (Family Ampullariidae) is native to America, but a number of species of Pomacea are invasive, and are now found in other regions of the world. Adults can be the largest freshwater snails in the world, and may even reach the size of an apple (hence the common name of apple snails), and are frequently sold as aquarium species. However, if released, some species have proved capable of establishing in new areas, and at least two species (P. canaliculata and P. maculata) have become serious pests of rice in Asia. In August 2009, apple snails were found in the wild for the first time in Europe, in a river in Spain. As a result, emergency measures are being taken in Spain, and measures against the entire genus Pomacea are being added to the EU plant health legislation. Figure 2. Pomacea sp. eggs masses in Spain © Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya Figure 3. Pomacea sp. snail in shallow water © Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya Figure 4. Pomacea sp. sold in the pet Figure 5. Pomacea sp. removed from trade showing the globose shell and yellow water, showing the operculum partially colouration © Fera closing the shell © Fera Figure 6. Pomacea canaliculata/maculata Figure 7. Pomacea canaliculata/maculata in eggs laid on a coconut in Singapore © Dr Singapore showing the size of an adult snail Chris Malumphy compared to an adult hand © Dr Chris Malumphy Geographical Distribution The genus Pomacea is native to the New World.
    [Show full text]
  • Aramus Guarauna
    15 3 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (3): 497–507 https://doi.org/10.15560/15.3.497 Limpkin, Aramus guarauna (L., 1766) (Gruiformes, Aramidae), extralimital breeding in Louisiana is associated with availability of the invasive Giant Apple Snail, Pomacea maculata Perry, 1810 (Caenogastropoda, Ampullariidae) Robert C. Dobbs1, 2, Jacoby Carter1, Jessica L. Schulz1 1 US Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA, 70506, USA. 2 Current address: Louisiana Department of Wildlife and Fisheries, 200 Dulles Dr., Lafayette, LA, 70506, USA. Corresponding author: Robert C. Dobbs, [email protected] Abstract We document the first breeding record of Limpkin, Aramus guarauna (Linnaeus, 1766) (Gruiformes, Aramidae), for Louisiana, describe an additional unpublished breeding record from Georgia, as well as a possible record from Alabama, and associate these patterns with the concurrent establishment of the invasive Giant Apple Snail, Pomacea maculata Perry, 1810 (Caenogastropoda, Ampullariidae). We predict that an invasive prey species may facilitate range expansion by native predator species, which has ramifications for conservation and management. Keywords Biological control, invasive species, predator-prey relationship, range expansion, species distribution. Academic editor: Michael J. Andersen | Received 2 November 2018 | Accepted 5 May 2019 | Published 21 June 2019 Citation: Dobbs RC, Carter J, Schulz JL (2019) Limpkin, Aramus guarauna (L., 1766) (Gruiformes, Aramidae), extralimital breeding in Louisiana is associated with availability of the invasive Giant Apple Snail, Pomacea maculata Perry, 1810 (Caenogastropoda, Ampullariidae). Check List 15 (3): 497–507. https://doi.org/10.15560/15.3.497 Introduction is historically closely associated with, and perhaps lim- ited by, that of the native Florida Apple Snail, Pomacea The Giant Apple Snail, Pomacea maculata Perry, 1810 paludosa (Say, 1829) (Stevenson and Anderson 1994).
    [Show full text]
  • Pomacea Diffusa) Ecological Risk Screening Summary
    Spike-topped Applesnail (Pomacea diffusa) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, November 2016 Revised, February 2017 Web Version, 12/11/2017 Photo: S. Ghesquiere. Licensed under CC BY-SA. Available: https://commons.wikimedia.org/w/index.php?curid=1840090. (February 2017). 1 Native Range and Status in the United States Native Range From Rawlings et al. (2007): “The type locality of Pomacea diffusa is in the city of Santa Cruz, Bolivia, although the species is widespread throughout the Amazon Basin.” Status in the United States From Fasulo (2011): “Pomacea diffusa Blume, 1957, the spike-topped applesnail, is a Brazilian species that was introduced into southern Florida, probably in the 1950s. This species [. .] is established in 1 Broward, Miami-Dade, Monroe and Palm Beach counties. It is also present in parts of central and north-central Florida. Collections have been made in Alabama and Mississippi. (FFWCC 2006, USGS [2009]).” From Rawlings et al. (2007): “Howells et al. [2006] reported its establishment in Mobile, Alabama in 2003.” From Cowie and Hayes (2012): “Pomacea diffusa […] was reported in the wild in Hawaii (Cowie, 1995) but has declined and was not recorded in more recent surveys (Cowie et al, 2007).” Means of Introductions in the United States From Fasulo (2011): “It is marketed as an aquarium species under the name "golden applesnail." However, commercial varieties have been bred for the aquarium trade, including the "albino mystery snail." These aquarium snails are sometimes dumped into isolated bodies of water and have been recovered as far north as Alachua County, Florida (Thompson 1984).” Remarks From GBIF (2016): “SYNONYMS Pomacea bridgesii subsp.
    [Show full text]
  • Invasive Pomacea Snails: Actual and Potential Environmental Impacts and Their Underlying Mechanisms
    CAB Reviews 2019 14, No. 042 Invasive Pomacea snails: actual and potential environmental impacts and their underlying mechanisms P. R. Martín1,2*, S. Burela1,2, M. E. Seuffert1,2, N. E. Tamburi1,3 and L. Saveanu1,3 Address: 1 Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR, UNS-CONICET), San Juan 671, Bahía Blanca, Argentina. 2 Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina. 3 Departamento de Matemática, Universidad Nacional del Sur, Alem 1250, Bahía Blanca, Argentina. PRM: 0000-0002-2987-7901, SB: 0000-0002-0695-8477, MES: 0000-0002-7637-3626, NET: 0000-0002-5644-9478, LS: 0000-0001-6408-4571. *Correspondence: P. R. Martín. Email: [email protected] Received: 4 April 2019 Accepted: 31 May 2019 doi: 10.1079/PAVSNNR201914042 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews © CAB International 2019 (Online ISSN 1749-8848) Abstract Apple snails are large freshwater snails belonging to the family Ampullariidae that inhabit tropical to temperate areas. The South American apple snails Pomacea canaliculata and Pomacea maculata have been introduced to other continents where they have successfully established and spread. Our review aims to analyse the mechanisms of the impacts that these invasive Pomacea provoke or may provoke. Nine basic mechanisms were identified: grazing/herbivory/browsing, competition, predation, disease transmission, hybridisation with native species, poisoning/toxicity, interaction with other invasive species, promotion of collateral damage of control methods on non-target species and when acting as prey. The most important impacts are those related to their grazing on aquatic macrophytes, algae and rice and their competition and predation on other aquatic animals, mostly macroinvertebrates, including other apple snails.
    [Show full text]