Thyroid Disease Diagnosis, Treatment and Health Prevention: an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Thyroid Disease Diagnosis, Treatment and Health Prevention: an Overview THYROID DISEASE DIAGNOSIS, TREATMENT AND HEALTH PREVENTION: AN OVERVIEW Jassin M. Jouria, MD Dr. Jassin M. Jouria is a medical doctor, professor of academic medicine, and medical author. He graduated from Ross University School of Medicine and has completed his clinical clerkship training in various teaching hospitals throughout New York, including King’s County Hospital Center and Brookdale Medical Center, among others. Dr. Jouria has passed all USMLE medical board exams, and has served as a test prep tutor and instructor for Kaplan. He has developed several medical courses and curricula for a variety of educational institutions. Dr. Jouria has also served on multiple levels in the academic field including faculty member and Department Chair. Dr. Jouria continues to serves as a Subject Matter Expert for several continuing education organizations covering multiple basic medical sciences. He has also developed several continuing medical education courses covering various topics in clinical medicine. Recently, Dr. Jouria has been contracted by the University of Miami/Jackson Memorial Hospital’s Department of Surgery to develop an e-module training series for trauma patient management. Dr. Jouria is currently authoring an academic textbook on Human Anatomy & Physiology. Abstract Management of the common forms of thyroid disease has undergone significant study and development, as evidenced by the latest guidelines to diagnose and treat the thyroid. Because the thyroid gland’s role is so pervasive in the body, it is important for clinicians to understand the common symptoms of various thyroid diseases, including those not so commonly known. The diagnosis, treatment and prevention of thyroid conditions are discussed. nursece4less.com nursece4lesscom nursece4less.com nursece4less.com 1 Policy Statement This activity has been planned and implemented in accordance with the policies of NurseCe4Less.com and the continuing nursing education requirements of the American Nurses Credentialing Center's Commission on Accreditation for registered nurses. It is the policy of NurseCe4Less.com to ensure objectivity, transparency, and best practice in clinical education for all continuing nursing education (CNE) activities. Continuing Education Credit Designation This educational activity is credited for 4 hours. Nurses may only claim credit commensurate with the credit awarded for completion of this course activity. Statement of Learning Need The thyroid gland is active in virtually every cell of the body, regulating cellular respiration, energy expenditure, overall metabolism, growth and development of cells and tissues. It is important to understand the symptoms of thyroid diseases, and to know the management and treatment of these conditions. Course Purpose To provide advanced learning for clinicians interested in the diagnosis, treatment and prevention of thyroid disease. nursece4less.com nursece4lesscom nursece4less.com nursece4less.com 2 Target Audience Advanced Practice Registered Nurses and Registered Nurses (Interdisciplinary Health Team Members, including Vocational Nurses and Medical Assistants may obtain a Certificate of Completion) Course Author & Planning Team Conflict of Interest Disclosures Jassin M. Jouria, MD, William S. Cook, PhD, Douglas Lawrence, MA, Susan DePasquale, MSN, FPMHNP-BC – all have no disclosures Acknowledgement of Commercial Support There is no commercial support for this course. Please take time to complete a self-assessment of knowledge, on page 4, sample questions before reading the article. Opportunity to complete a self-assessment of knowledge learned will be provided at the end of the course. nursece4less.com nursece4lesscom nursece4less.com nursece4less.com 3 1. The thyroid gland has been called the “Master Gland” because it a. produces parathormone. b. is a member of the hormone-responsive nuclear transcription factors superfamily. c. is active in virtually every cell of the body. d. plays a vital role in controlling calcium and phosphate levels. 2. True or False: Embryologically, the developing thyroid forms the floor of the pharynx, around the base of the tongue, descending the neck to its adult location. a. True b. False 3. The thyroid is supplied by the superior and inferior thyroid arteries, and on rare occasions, there is an additional artery known as the a. innominate artery. b. subclavian artery. c. deep artery. d. thyroidea ima. 4. Thyroid hormone is a. required for normal human growth and development. b. required for the regulation of metabolism in infants and adolescents. c. mostly active during the neonatal and pre-adolescent periods. d. primarily used for the production of iodine. 5. Thyroid hormone ____________ begins with the organification of iodide to iodine and then condensed onto tyrosine residues found on thyroglobulin protein. a. absorption b. secretion c. synthesis d. conversion nursece4less.com nursece4lesscom nursece4less.com nursece4less.com 4 Introduction The thyroid gland has been called the Master Gland because it is active in virtually every cell of the body, regulating cellular respiration, energy expenditure, overall metabolism, growth and development of cells and tissues. Because the thyroid gland’s role is so pervasive in the body, it is important to understand the symptoms of the types of thyroid disease such as hypothyroidism and hyperthyroidism, and to know the management and treatment of these conditions. Anatomy Of The Thyroid The anatomy of the thyroid gland is reviewed in this first section of this course to provide a basic understanding of thyroid structures, hormones, and the blood and nerve supply. There are various ways to evaluate the thyroid gland to rule out pathology, which is covered in later course sections and as well as in subsequent course series on thyroid disease, diagnostic testing, pathology and treatment.1-6 The thyroid gland consisting of two lobes and connected by an isthmus, is located at the anterior neck, just below the cricoid cartilage, roughly at the level of C5 to T1 and overlaying the second to the fourth tracheal rings. The parathyroid glands are four small glands usually located at the posterior portions of the thyroid and which produce parathyroid hormone (PTH) and play a vital role in controlling calcium and phosphate levels. The parathyroid glands share blood supply, lymphatic drainage and venous supply with the thyroid. Embryologically, the developing thyroid forms the floor of the pharynx, around the base of the tongue, descending the neck in the adult. As it descends during the 4th to 8th week of gestation, the thyroglossal duct, nursece4less.com nursece4lesscom nursece4less.com nursece4less.com 5 a duct that has regressed in the adult, guides the thyroid gland. In about half of individuals, however, the distal portion of the thyroglossal duct remains, essentially as an extra lobe of thyroid tissue with no apparent clinical significance. Thyroglossal cysts, resulting from persistent sections of the thyroglossal duct, occur relatively commonly. These can be diagnosed with ultrasonography. The most common complications of a thyroglossal cyst are infection and malignancy, occurring in 1 to 4% of individuals. The mass and dimensions of the thyroid can vary, but tends to be slightly heavier in females, enlarging during monthly cycles and in pregnancy. In both males and females, the mass is 25 – 30 gm with each lobe 50 – 60 mm. The thyroid gland is principally enervated by the autonomic nervous system with parasympathetic fibers from the vagus, and sympathetic enervation is derived from the superior, middle and inferior ganglia of the sympathetic trunk. The fibers enter the gland alongside the vasculature and appear to primarily regulate perfusion rates. The basic structural unit of the thyroid are the follicles, formed by multiple septae, dividing the gland into lobes and lobules, with the follicles consisting of a layer of epithelial cells surrounding a colloid- nursece4less.com nursece4lesscom nursece4less.com nursece4less.com 6 filled center surrounded by fenestrated capillaries, lymphatic vessels and sympathetic nerves. Within the colloid, iodothyroglobulin (the precursor of the thyroid hormones) can be found. The principle or follicular cells secrete the colloid. The parafollicular cells, embedded within the basal laminae and adjacent to the follicles secrete calcitonin (a hormone that regulates calcium in the blood). Vascular and Lymphatic Anatomy of the Thyroid The superior and inferior thyroid arteries supply the thyroid. Relatively rarely, there is an additional artery, the thyroidea ima that originates from the aortic arch or the innominate artery, entering the gland at the inferior border of the isthmus. The arterial supply has numerous anastomoses that are present both ipsilaterally and contralaterally. The superior thyroid artery is the first branch (anterior) off the external carotid. After branching, it descends laterally to the larynx, posterior to the omohyoid and sternohyoid muscles. It then runs superficially along the anterior border, delivering a deep branch before curving towards the isthmus. The superior thyroid artery then anastomoses with the contralateral artery. The inferior thyroid artery branches off from the thyrocervical trunk (a branch of the subclavian artery). After branching off, the inferior thyroid artery ascends superiorly and then laterally, entering the tracheoesophageal groove posterior to the carotid sheath. Sub-branches then enter along the posterior portion of the lobes. The recurrent
Recommended publications
  • Novel Application of Quantitative Single-Photon Emission Computed
    Original Article | Nuclear Medicine https://doi.org/10.3348/kjr.2017.18.3.543 pISSN 1229-6929 · eISSN 2005-8330 Korean J Radiol 2017;18(3):543-550 Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves’ Disease Hyun Joo Kim, MD1, 2, Ji-In Bang, MD1, Ji-Young Kim, MD, PhD1, Jae Hoon Moon, MD, PhD3, Young So, MD, PhD4, Won Woo Lee, MD, PhD1, 5 Departments of 1Nuclear Medicine and 3Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; 2Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Korea; 4Department of Nuclear Medicine, Konkuk University Medical Center, Seoul 05030, Korea; 5Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 08826, Korea Objective: Since Graves’ disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods: A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc- pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean x thyroid volume) from the SPECT/CT, and clinical/ biochemical variables, were investigated.
    [Show full text]
  • Fate of Sodium Pertechnetate-Technetium-99M
    JOURNAL OF NUCLEAR MEDICINE 8:50-59, 1967 Fate of Sodium Pertechnetate-Technetium-99m Dr. Muhammad Abdel Razzak, M.D.,1 Dr. Mahmoud Naguib, Ph.D.,2 and Dr. Mohamed El-Garhy, Ph.D.3 Cairo, Egypt Technetium-99m is a low-energy, short half-life iostope that has been recently introduced into clinical use. It is available as the daughter of °9Mowhich is re covered as a fission product or produced by neutron bombardement of molyb denum-98. The aim of the present work is to study the fate of sodium pertechnetate 9OmTc and to find out any difference in its distribution that might be caused by variation in the method of preparation of the parent nuclide, molybdenum-99. MATERIALS & METHODS The distribution of radioactive sodium pertechnetate milked from 99Mo that was obtained as a fission product (supplied by Isocommerz, D.D.R.) was studied in 36 white mice, weighing between 150 and 250 gm each. Normal isotonic saline was used for elution of the pertechnetate from the radionuclide generator. The experimental animals were divided into four equal groups depending on the route of administration of the radioactive material, whether intraperitoneal, in tramuscular, subcutaneous or oral. Every group was further subdivided into three equal subgroups, in order to study the effect of time on the distribution of the pertechnetate. Thus, the duration between administration of the radio-pharma ceutical and sacrificing the animals was fixed at 30, 60 and 120 minutes for the three subgroups respectively. Then the animals were dissected and the different organs taken out.Radioactivityin an accuratelyweighed specimen from each organ was estimated in a scintillation well detector equipped with one-inch sodium iodide thallium activated crystal.
    [Show full text]
  • Package Insert TECHNETIUM Tc99m GENERATOR for the Production of Sodium Pertechnetate Tc99m Injection Diagnostic Radiopharmaceuti
    NDA 17693/S-025 Page 3 Package Insert TECHNETIUM Tc99m GENERATOR For the Production of Sodium Pertechnetate Tc99m Injection Diagnostic Radiopharmaceutical For intravenous use only Rx ONLY DESCRIPTION The technetium Tc99m generator is prepared with fission-produced molybdenum Mo99 adsorbed on alumina in a lead-shielded column and provides a means for obtaining sterile pyrogen-free solutions of sodium pertechnetate Tc99m injection in sodium chloride. The eluate should be crystal clear. With a pH of 4.5-7.5, hydrochloric acid and/or sodium hydroxide may have been used for Mo99 solution pH adjustment. Over the life of the generator, each elution will provide a yield of > 80% of the theoretical amount of technetium Tc99m available from the molybdenum Mo99 on the generator column. Each eluate of the generator should not contain more than 0.0056 MBq (0.15 µCi) of molybdenum Mo99 per 37 MBq, (1 mCi) of technetium Tc99m per administered dose at the time of administration, and not more than 10 µg of aluminum per mL of the generator eluate, both of which must be determined by the user before administration. Since the eluate does not contain an antimicrobial agent, it should not be used after twelve hours from the time of generator elution. PHYSICAL CHARACTERISTICS Technetium Tc99m decays by an isomeric transition with a physical half-life of 6.02 hours. The principal photon that is useful for detection and imaging studies is listed in Table 1. Table 1. Principal Radiation Emission Data1 Radiation Mean %/Disintegration Mean Energy (keV) Gamma-2 89.07 140.5 1Kocher, David C., “Radioactive Decay Data Tables,” DOE/TIC-11026, p.
    [Show full text]
  • Loss of Pertechnetate from the Human Thyroid
    LOSS OF PERTECHNETATE FROM THE HUMAN THYROID J. G. Shimmins Regional Dept. of Clinical Physics and Bioengineering, Western Regional Hospital Board, Glasgow, Scotland R. McG. Harden and W. D. Alexander University Department of Medicine, Western Infirmary, Glasgow, Scotland The pertechnetate ion, like the iodide ion, is Magnascanner V (3,6) were started immediately trapped by the thyroid gland (1 ). Several authors after injection and were continued for 45 mm when have claimed that pertechnetate is not bound in the five scans had normally been completed. The scan thyroid (2) and that the gland behaves as a single speed was 100 cm/sec, and the line spacing was compartment (3) . However, the finding of organic 1 cm. Venous blood samples were taken at 2, 8, 15, binding of 9DmTcin rats (4,5) raises the question 30 and 45 mm. One gram perchlorate was given of whether some such binding may not occur in man. orally as a crushed powder in nine subjects 50 mm In this study we have investigated the binding of after the intravenous administration of pertechne pertechnetate in the human gland by measuring the tate. The same amount was given orally to the re rate of pertechnetate discharge from it after per maining four 3 hr after intravenous administra chlorate administration and have compared this rate tion of pertechnetate. Scans were carried out for an of discharge with the normal loss rate of pertechne additional 45 min after perchlorate administration, tate from the thyroid (3). If pertechnetate is Un and blood samples were taken at 2, 8, 15 and 45 bound, it should be possible to discharge it from min.
    [Show full text]
  • Survey of the Actual Administration of Thiamazole for Hyperthyroidism in Japan by the Japan Thyroid Association
    doi:10.1507/endocrj.EJ21-0238 Original Survey of the actual administration of thiamazole for hyperthyroidism in Japan by the Japan Thyroid Association Natsuko Watanabe, Jaeduk Yoshimura Noh, Takashi Akamizu, Masanobu Yamada and the study group members of the Japan Thyroid Association The Japan Thyroid Association, Tokyo, Japan Abstract. To clarify the actual administration of thiamazole (MMI), the first choice of antithyroid drugs, the actual therapy provided by the Japan Thyroid Association (JTA) members for the following conditions was surveyed. The subjects included adult patients, pregnant women, and pediatric patients with Graves’ disease who visited each medical institution from September 2019 to February 2020. Initial doses, frequency of administration, maintenance doses, maximum doses, consultation intervals for pregnant women, and dosages administrated to breastfeeding mothers were surveyed. The total number of cases collected was 11,663. Administration of 15 mg once a day was the most common initial therapy, constituted 74.4% (2,526/3,397 cases) of adults, 33.8% (44/130) of pregnant women, and 50.8% (61/120) of children. The maintenance dose before discontinuation was equivalent to 2.5 mg/day in 52.3% (3,147/6,015). The most common maximum dose for adults and children was 30 mg/day, administrated to 57.5% of adults (223/388) and 59.6% (28/47) of children; for pregnant women, it was 15 mg/day, administrated to 71.1% (27/38). The most common consultation interval for pregnant women was every four weeks (32.1%, 341/1,063). In lactating mothers, the dose was 10 mg/day or less in 366 of 465 cases (78.7%).
    [Show full text]
  • Radionuclide Thyroid Scans
    Radionuclide Thyroid Scans Report 2003 1 Purpose The purpose of this guideline is to assist specialists in Nuclear Medicine and Radionuclide Radiology in recommending, performing, interpreting and reporting radionuclide thyroid scans. This guideline will assist individual departments in the formulation of their own local protocols. Background Thyroid scintigraphy is an effective imaging method for assessing the functionality of thyroid lesions including the uptake function of part or all of the thyroid gland. 99TCm pertechnetate is trapped by thyroid follicular cells. 123I-Iodide is both trapped and organified by thyroid follicular cells. Common Indications 1.1 Assessment of functionality of thyroid nodules. 1.2 Assessment of goitre including hyperthyroid goitre. 1.3 Assessment of uptake function prior to radio-iodine treatment 1.4 Assessment of ectopic thyroid tissue. 1.5 Assessment of suspected thyroiditis 1.6 Assessment of neonatal hypothyroidism Procedure 1 Patient preparation 1.1 Information on patient medication should be obtained prior to undertaking study. Patients on Thyroxine (Levothyroxine Sodium) should stop treatment for four weeks prior to imaging, patients on Tri-iodothyronine (T3) should stop treatment for two weeks if adequate images are to be obtained. 1.2 All relevant clinical history should be obtained on attendance, including thyroid medication, investigations with contrast media, other relevant medication including Amiodarone, Lithium, kelp, previous surgery and diet. 1.3 All other relevant investigations should be available including results of thyroid function tests and ultrasound examinations. 1.4 Studies should be scheduled to avoid iodine-containing contrast media prior to thyroid imaging. 2 1.5 Carbimazole and Propylthiouracil are not contraindicated in patients undergoing 99Tcm pertechnetate thyroid scans and need not be discontinued prior to imaging.
    [Show full text]
  • Resistance to Thyroid Hormone with a Mutation of the Thyroid B Receptor
    Case report/opis przypadku Endokrynologia Polska DOI: 10.5603/EP.a2018.0082 Tom/Volume 70; Numer/Number 1/2019 ISSN 0423–104X Resistance to thyroid hormone with a mutation of the thyroid b receptor gene in an eight-month-old infant — a case report Zespół oporności na hormony tarczycy spowodowany mutacją w genie kodującym podjednostkę b receptora hormonów tarczycy u 8-miesięcznego niemowlęcia: opis przypadku Elżbieta Foryś-Dworniczak, Carla Moran, Barbara Kalina-Faska, Ewa Małecka-Tendera, Agnieszka Zachurzok Department of Paediatrics and Paediatric Endocrinology, School of Medicine in Katowice, Katowice, Poland Abstract Introduction: Resistance to thyroid hormone (RTHb) is a rare syndrome of impaired tissue responsiveness to thyroid hormones (THs). The disorder has an autosomal dominant or recessive pattern of inheritance. Most of the reported mutations have been detected in the thyroid hormone receptor b gene (THRB). Case report: Authors present an eight-month-old infant with poor linear growth, decreased body weight, tachycardia, positive family history, and neonatal features suggestive of RTHb. Both our patient and his mother had elevated free thyroxine, free triiodothyronine, and non-suppressed thyrotropin (TSH) concentration. The fluorescent sequencing analysis showed a heterozygous mutation c.728G>A in TRb gene. This pathogenic variant is known to be associated with THR. Conclusions: The clinical presentation of RTHb is variable, ranging from isolated biochemical abnormalities to symptoms of thyrotoxicosis or hypothyroidism. The
    [Show full text]
  • IRENAT 300 Mg/Ml, Solution Buvable En Gouttes
    1. NAME OF THE MEDICINAL PRODUCT Irenat Drops 300 mg sodium perchlorate, oral drops Sodium perchlorate monohydrate 2. QUALITATIVE AND QUANTITATIVE COMPOSITION 1 ml solution (approximately 15 drops) contains 344.2 mg sodium perchlorate monohydrate (equivalent to 300 mg sodium perchlorate) For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Oral drops 4. CLINICAL PARTICULARS 4.1 Therapeutic indications For the treatment of hyperthyroidism, for thyroid blockade in the context of radionuclide studies of other organs using radioactively labelled iodine or of immunoscintigraphy to detect tumours using antibodies labelled with radioiodine. For the detection of a congenital iodine organification defect (perchlorate discharge test). 4.2 Posology and method of administration Posology Adults receive 4-5 x 10 Irenat drops daily (equivalent to 800-1000 mg sodium perchlorate) or, exceptionally, 5 x 15 Irenat drops daily (equivalent to 1500 mg sodium perchlorate) as an initial dose for the first 1-2 weeks. The mean maintenance dose is 4 x 5 Irenat drops (equivalent to 400 mg sodium perchlorate) per day. Children between the ages of 6 and 14 are treated throughout with a dose of 3-6 x 1 or 4-6 x 2 Irenat drops (equivalent to 60-240 mg sodium perchlorate) daily. When used for the perchlorate discharge test following administration of the dose of radioiodine tracer, a single dose is given of 30-50 Irenat drops (equivalent to 600-1000 mg sodium perchlorate) or 300 mg-600 mg/m 2 body surface area in children. As pretreatment for radionuclide studies not involving the thyroid itself and using radioactively labelled drugs or antibodies containing iodine or technetium, Irenat drops should be administered at doses of 10 – 20 drops (equivalent to 200-400 mg sodium perchlorate) and, in isolated cases, up to 50 drops (equivalent to 1000 mg sodium perchlorate) so as to reduce exposure of the thyroid to radiation and to block uptake of radionuclide into certain compartments.
    [Show full text]
  • Neo-Mercazole
    NEW ZEALAND DATA SHEET 1 NEO-MERCAZOLE Carbimazole 5mg tablet 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 5mg of carbimazole. Excipients with known effect: Sucrose Lactose For a full list of excipients see section 6.1 List of excipients. 3 PHARMACEUTICAL FORM A pale pink tablet, shallow bi-convex tablet with a white centrally located core, one face plain, with Neo 5 imprinted on the other. 4 CLINICAL PARTICULARS 4.1 Therapeutic indications Primary thyrotoxicosis, even in pregnancy. Secondary thyrotoxicosis - toxic nodular goitre. However, Neo-Mercazole really has three principal applications in the therapy of hyperthyroidism: 1. Definitive therapy - induction of a permanent remission. 2. Preparation for thyroidectomy. 3. Before and after radio-active iodine treatment. 4.2 Dose and method of administration Neo-Mercazole should only be administered if hyperthyroidism has been confirmed by laboratory tests. Adults Initial dosage It is customary to begin Neo-Mercazole therapy with a dosage that will fairly quickly control the thyrotoxicosis and render the patient euthyroid, and later to reduce this. The usual initial dosage for adults is 60 mg per day given in divided doses. Thus: Page 1 of 12 NEW ZEALAND DATA SHEET Mild cases 20 mg Daily in Moderate cases 40 mg divided Severe cases 40-60 mg dosage The initial dose should be titrated against thyroid function until the patient is euthyroid in order to reduce the risk of over-treatment and resultant hypothyroidism. Three factors determine the time that elapses before a response is apparent: (a) The quantity of hormone stored in the gland. (Exhaustion of these stores usually takes about a fortnight).
    [Show full text]
  • Summary of Product Characteristics
    Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Ultra-TechneKow FM 2.15-43.00 GBq radionuclide generator 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Sodium pertechnetate (99mTc) injection is produced by means of a (99Mo/99mTc) generator. Technetium (99mTc) decays with the emission of gamma radiation with a mean energy of 140 keV and a half-life of 6.01 hours to technetium (99Tc) which, in view of its long half-life of 2.13 x 105 years can be regarded as quasi stable. The radionuclide generator containing the parent isotope 99Mo, adsorbed on a chromatographic column delivers sodium pertechnetate (99mTc) injection in sterile solution. The 99Mo on the column is in equilibrium with the formed daughter isotope 99mTc. The generators are supplied with the following 99Mo activity amounts at activity reference time which deliver the following technetium (99mTc) amounts, assuming a 100% theoretical elution yield and 24 hours time from previous elution and taking into account that branching ratio of 99Mo is about 87%: 99mTc activity (maximum theoretical elutable 1.90 3.81 5.71 7.62 9.53 11.43 15.24 19.05 22.86 26.67 30.48 38.10 GBq activity at ART, 06.00 h CET) 99Mo activity (at ART, 06.00 h 2.15 4.30 6.45 8.60 10.75 12.90 17.20 21.50 25.80 30.10 34.40 43.00 GBq CET) The technetium (99mTc) amounts available by a single elution depend on the real yields of the kind of generator used itself declared by manufacturer and approved by National Competent Authority.
    [Show full text]
  • Thyroid Crisis Following Interstitial Nephritis
    □ CASE REPORT □ Thyroid Crisis following Interstitial Nephritis Toshio Kahara 1, Miyako Yoshizawa 1, Izaya Nakaya 1, Akio Uchiyama 2,AtsuoMiwa2, Yasunori Iwata 1, Muneyoshi Torita 1, Rika Usuda 1 and Hiroyuki Iida 1 Abstract A 54-year-old man with Graves’ disease had been treated with thiamazole (5 mg/day). His thyroid hor- mone level was increased after exodontia in February 2006. Although his prescribed dose of thiamazole was increased after exodontia on the fourth day, he developed thyroid crisis on exodontia 52nd day. Laboratory findings also showed renal dysfunction (from Cr 1.0 mg/dL in July 2005 to Cr 1.8 mg/dL on exodontia 37th day). His thyroid hormone level was normalized after subtotal thyroidectomy; however, serum Cr level was still high. He was diagnosed with interstitial nephritis as a result of renal biopsy, and he was treated with prednisolone 30 mg/day. This present case developed thyroid crisis even though the quantity of thiamazole was increased after exodontia. It seems that interstitial nephritis, as well as exodontia, is an aggravation fac- tor of thyroid function. After a poor response to anti-thyroid drugs, it is necessary to prevent thyroid crisis by determining the aggravating factor and to then provide appropriate treatment. Key words: interstitial nephritis, thyroid crisis, hyperthyroidism, Graves’ disease (Inter Med 47: 1237-1240, 2008) (DOI: 10.2169/internalmedicine.47.0947) 4.7% are due to tubulointerstitial nephritis and uveitis syn- Introduction drome (TINU) (2). There are case reports of transient hyper- thyroidism in TINU (3, 4), and interstitial nephritis may Thyroid crisis is defined as thyroid function that is ex- contribute to aggravation of the thyroid function.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]