Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Effects of airbursts on the surface of Venus Item Type text; Dissertation-Reproduction (electronic) Authors Wood, David Allen Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 00:16:46 Link to Item http://hdl.handle.net/10150/289162 INFORMATION TO USERS This manuscript has t>een reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bteedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dkj not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the detetion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, l>eginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original marujscript have been reproduced xerographically in this copy. Higher quality 6' x 9' black and white photographic prints are availat>te for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Informatton arxJ Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 EFFECTS OF AIRBURSTS ON THE SURFACE OF VENUS by David Allen Wood, Jr. A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2000 UMf Number 9983856 UMII® UMI Mjcrofomi9983856 Copyright 2000 by Bell & Howell Infomiation and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Leaming Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 2 THE UNIVERSITY OF ARIZONA « GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared bv David Allen Wood, Jr. entitled Effects of Airbursts on the Surface of Venus and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosoohv G. Robe«t G. Strom Datete f . ^/u/a d Date , ^ Titao thy D.Wind^ Dace // 4-U-) kxt i-cosi "andall M. Richardson Date C. Wallace Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. (k. Dissertation Director Robert G. Strom D*" STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfiUment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED. David A. Wood, Jr. , ACKNOWLEDGEMENTS Over the course of your life, you encounter so many people who help shape you and mold you into the person you eventually become. That is why acknowledgements are so difficult to write. Invariably, some one of imi>ortance gets left off such a list, so I issue in advance my humblest apologies to those I don't mention here by name. I want you all to know how very grateful I am for all of the support and encouragement I've received throughout my life. Let me start by thauiking the members of my conmiittee who have given me the benefit of the doubt in trying times. I have done my best and I hope your faith in me has not been misplaced. Thanks especially to Bob Strom and Jay Melosh who devoted special attention to me in the last semester as I worked to fmish. Your patience with me is greatly appreciated. Thanks also go to Jay for providing much needed advice and assistance with the hydrocode simulations. Thanks also to Mike Drake for providing me with an RA so that I could devote all of my energy to this. Many thanks go to Hal Larson, Tim Swindle, and David Hough who gave me unique opportunities to grow and develop as both an undergraduate and a graduate student. These gentlemen are all wonderful mentors. I also want to thank other mentors I have had in the course of my education. Brother Jim Burkholder inspired me in physics, Mr. David Casanova made chemistry personal, and Ms. Donna DeLire fueled my passion for pure mathematics. Had I not been on a science track already, I would have switched because of these fabulous teachers. To my friends, Clark, Janet, and Suzann, I can say only that I am so honored and privileged to have met you. You have been truly loyal fnends, and my life has been enriched because of you. Let me also mention Brad, Kirstin, Heather, Jeni, Marc, Brian, Jim, Celinda, and Pete. Thank you all for the fnendships I have enjoyed with each of you during my stay here. Finally, I am so blessed to have the greatest family in the world. Thank you Mom and Dad, Jeff, Leisha, Bryan and Lindsay, Laurie and Josh, Tim, Lissa and John, and Pam for all the great times I had growing up. To Grandma Wood, Grandma and Grandpa Savary, Gaki, and all of my aunts, uncles, and cousins, it is always a treat to spend time with you. I hope I've made you all proud. To my nephews, Seth, Michael, and Caleb, life will always throw challenges in your path, and no matter how difficult those challenges become, I know you will rise up to meet them. Finally, let me give a very special thank you to Uncle Don for a very difficult favor he provided. DEDICATION For my parents David and Cynthia Wood 6 TABLE OF CONTENTS LIST OF ILLUSTRATIONS 9 LIST OF TABLES 16 ABSTRACT 17 1. THE PROBLEM 18 1.1 INTRODUCTION 18 1.2 IMPACT CRATERING ON AIRLESS SURFACES 19 1.3 IMPACT CRATERING IN THE PRESENCE OF AN ATMOSPHERE 21 1.4 VENUS: A NATURAL LABORATORY FOR IMPACT STUDIES 25 1.5 MAGELLAN SYNTHETIC APERTURE RADAR (SAR) IMAGING 27 1.6 MOTIVATING THE PROBLEM 30 1.7 PRELUDE 34 2. ANALYSIS OF CIRCULAR RADAR ALBEDO FEATURES 35 2.1 INTRODUCTION 35 2.2 SPLOTCHES 36 2.3 DISRUPTED SPLOTCHES 44 2.4 CRATER HALOES 46 2.5 RELATIONSHIPS BETWEEN IMPACT FEATURES 46 2.5.1 Comparing Craters to Haloes 48 2.5.2 Comparing Haloes to Splotches 48 2.6 TERRAIN EFFECTS 68 2.7 SUMMARY 88 3. A HISTORY OF THE PROBLEM 92 3.1 SETTING THE SCENE 92 3.2 AIRBURSTS 93 3.3 SURFACE DAMAGE 94 3.4 EVOLUTION OF ZAHNLE'S CRUSHING MODEL 95 3.5 ALTERNATIVE MODELS 97 3.5.1 Back Venting 97 3.5.2 Parabaloidal Bowshock Model 99 3.5.3 Parabola Degradation Model 100 3.5.4 Impactor Debris Model 101 3.6 THE NEXT STEP 103 7 TABLE OF CONTENTS - CONT 4. THE MODEL 105 4.1 THE UNMODIFIED CRUSHING MODEL 105 4.2 AIRBURSTS 105 4.3 STRONG SHOCK WAVES IN THE VENUSIAN ATMOSPHERE 111 4.3.1 Propagation of Strong Shock Waves 113 4.3.2 Shock Waves Reflected From a Rigid Surface 115 4.3.3 Effects of Airburst Altitude on Shock Reflection 118 4.4 ROCK FRAGMENTATION 120 4.5 WIND TRANSPORT OF SMALL PARTICLES 123 4.6 AIRBURST SCAR MODELS 129 4.6.1 Crushing and Breaking Rock 129 4.6.2 Crushing and Scouring 133 4.6.3 Back Venting 135 4.6.4 Fireball 136 4.6.5 Base Surge 137 4.7 MODEL SYNTHESIS 138 4.8 SUMMARY 140 5. HYDROCODE SIMULATIONS 142 5.1 THE ORIGIN OF HYDROCODES 142 5.2 THE SALE HYDROCODE 143 5.2.1 The Hydrocode Mesh 144 5.2.2 SALE in Lagrangian Mode 144 5.2.3 SALE in Eulerian Mode 145 5.2.4 Artificial Viscosity 146 5.2.5 Alternate Node Coupler 148 5.3 SIMULATING AN AIRBURST 148 5.3.1 The Venusian Atmosphere 149 5.3.2 The Airburst 151 5.3.3 Simulation Conditions 152 5.4 RESOLUTION STUDIES 153 5.4.1 Mesh Size 153 5.4.2 Maximum Time Step 154 5.4.3 Artificial Viscosity 161 5.4.4 Comparison to the Sedov Solution 164 5.5 SUMMARY 168 6. MODEL AND DATA COMPARISONS 169 6.1 METHODS OF ANALYSIS 169 6.2 AIRBURST SIMULAHONS 169 6.3 HYDROCODE SIMULATIONS 177 8 TABLE OF CONTENTS - CONT 6.3.1 Relationship Between Pressure and Radial Wind Velocity 178 6.3.2 Pressures in Rock 188 6.3.3 Radial Wind Velocities 198 6.4 RADII OF DARK AND BRIGHT AIRBURST SCARS 201 6.4.1 Effect of Rarefaction Wind on Dark Region Size 203 6.4.2 Radii of Bright Regions 207 6.4.3 Comparison of Bright and Dark Radii 208 6.5 RANGE OF IMPACTOR SIZES 212 6.6 LIFETIMES OF AIRBURST SCARS 214 6.6.1 Aeolian Redistribution Rate 216 6.6.2 Lifetimes of Radar-Bright Regions 217 6.6.3 Lifetimes of Radar-Dark Regions 218 6.6.4 Estimating the Number of Airbursts Over Time 222 6.7 SUMMARY AND IMPLICATIONS OF CRUSHING AND SCOURING 223 6.8 PROBLEMS WITH THE CRUSHING AND SCOURING MODEL 226 6.9 EXPANDING HORIZONS 228 7.
Recommended publications
  • Lunar Impact Crater Identification and Age Estimation with Chang’E
    ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Workshop on Lunar Volcanic Glasses: Scientific and Resource Potential
    WORKSHOP ON LUNAR VOLCANIC GLASSES: SCIENTIFIC AND RESOURCE POTENTIAL t)--- LPI Technical Report Number 90~02 .. LUNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON, TEXAS 77058-4399 WORKSHOP ON LUNAR VOLCANIC GLASSES: SCIENTIFIC AND RESOlTRCE POTENTIAL Edited by John W. Delano and Grant H. Heiken Held at Lunar and Planetary Institute Houston, Texas October 10 - 11, 1989 Sponsored by Lunar and Planetary Institute Lunar and Planetary Sample Team Lunar and Planetary Institute 3303 NASA Road 1 Houston, Texas 77058-4399 LPI Technical Report Number 90-02 Compiled in 1990 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4066 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Delano J. W. and Heiken G. H., eds. (1990) Workshop on Lunar Volcanic Glasses: Scientific alld Resource Potelltial. LPI Tech. Rpt. 90-02. Lunar and Planetary Institute, Houston. 74 pp. Papers in this report may be cited as: Author A. A. (1990) Title of paper. In Workshop Oil Lunar Volcanic Glasses: Scientific alld Resource Potelltial (J. W. Delano and G. H. Heiken, eds.), pp. xx-yy. LPI Tech. Rpt. 90-02. Lunar and Planetary Institute, Houston. This report is distributed by: ORDER DEPARTMENT Lunar and Planetary Institute 3303 NASA Road 1 Houston, TX 77058-4399 Mail order requestors will be ill voiced for the cost ofshippillg and halldling.
    [Show full text]
  • CALIFORNIA's NORTH COAST: a Literary Watershed: Charting the Publications of the Region's Small Presses and Regional Authors
    CALIFORNIA'S NORTH COAST: A Literary Watershed: Charting the Publications of the Region's Small Presses and Regional Authors. A Geographically Arranged Bibliography focused on the Regional Small Presses and Local Authors of the North Coast of California. First Edition, 2010. John Sherlock Rare Books and Special Collections Librarian University of California, Davis. 1 Table of Contents I. NORTH COAST PRESSES. pp. 3 - 90 DEL NORTE COUNTY. CITIES: Crescent City. HUMBOLDT COUNTY. CITIES: Arcata, Bayside, Blue Lake, Carlotta, Cutten, Eureka, Fortuna, Garberville Hoopa, Hydesville, Korbel, McKinleyville, Miranda, Myers Flat., Orick, Petrolia, Redway, Trinidad, Whitethorn. TRINITY COUNTY CITIES: Junction City, Weaverville LAKE COUNTY CITIES: Clearlake, Clearlake Park, Cobb, Kelseyville, Lakeport, Lower Lake, Middleton, Upper Lake, Wilbur Springs MENDOCINO COUNTY CITIES: Albion, Boonville, Calpella, Caspar, Comptche, Covelo, Elk, Fort Bragg, Gualala, Little River, Mendocino, Navarro, Philo, Point Arena, Talmage, Ukiah, Westport, Willits SONOMA COUNTY. CITIES: Bodega Bay, Boyes Hot Springs, Cazadero, Cloverdale, Cotati, Forestville Geyserville, Glen Ellen, Graton, Guerneville, Healdsburg, Kenwood, Korbel, Monte Rio, Penngrove, Petaluma, Rohnert Part, Santa Rosa, Sebastopol, Sonoma Vineburg NAPA COUNTY CITIES: Angwin, Calistoga, Deer Park, Rutherford, St. Helena, Yountville MARIN COUNTY. CITIES: Belvedere, Bolinas, Corte Madera, Fairfax, Greenbrae, Inverness, Kentfield, Larkspur, Marin City, Mill Valley, Novato, Point Reyes, Point Reyes Station, Ross, San Anselmo, San Geronimo, San Quentin, San Rafael, Sausalito, Stinson Beach, Tiburon, Tomales, Woodacre II. NORTH COAST AUTHORS. pp. 91 - 120 -- Alphabetically Arranged 2 I. NORTH COAST PRESSES DEL NORTE COUNTY. CRESCENT CITY. ARTS-IN-CORRECTIONS PROGRAM (Crescent City). The Brief Pelican: Anthology of Prison Writing, 1993. 1992 Pelikanesis: Creative Writing Anthology, 1994. 1994 Virtual Pelican: anthology of writing by inmates from Pelican Bay State Prison.
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • GRAIL Twins Toast New Year from Lunar Orbit
    Jet JANUARY Propulsion 2012 Laboratory VOLUME 42 NUMBER 1 GRAIL twins toast new year from Three-month ‘formation flying’ mission will By Mark Whalen lunar orbit study the moon from crust to core Above: The GRAIL team celebrates with cake and apple cider. Right: Celebrating said. “So it does take a lot of planning, a lot of test- the other spacecraft will accelerate towards that moun- GRAIL-A’s Jan. 1 lunar orbit insertion are, from left, Maria Zuber, GRAIL principal ing and then a lot of small maneuvers in order to get tain to measure it. The change in the distance between investigator, Massachusetts Institute of Technology; Charles Elachi, JPL director; ready to set up to get into this big maneuver when we the two is noted, from which gravity can be inferred. Jim Green, NASA director of planetary science. go into orbit around the moon.” One of the things that make GRAIL unique, Hoffman JPL’s Gravity Recovery and Interior Laboratory (GRAIL) A series of engine burns is planned to circularize said, is that it’s the first formation flying of two spacecraft mission celebrated the new year with successful main the twins’ orbit, reducing their orbital period to a little around any body other than Earth. “That’s one of the engine burns to place its twin spacecraft in a perfectly more than two hours before beginning the mission’s biggest challenges we have, and it’s what makes this an synchronized orbit around the moon. 82-day science phase. “If these all go as planned, we exciting mission,” he said.
    [Show full text]
  • Russian Museums Visit More Than 80 Million Visitors, 1/3 of Who Are Visitors Under 18
    Moscow 4 There are more than 3000 museums (and about 72 000 museum workers) in Russian Moscow region 92 Federation, not including school and company museums. Every year Russian museums visit more than 80 million visitors, 1/3 of who are visitors under 18 There are about 650 individual and institutional members in ICOM Russia. During two last St. Petersburg 117 years ICOM Russia membership was rapidly increasing more than 20% (or about 100 new members) a year Northwestern region 160 You will find the information aboutICOM Russia members in this book. All members (individual and institutional) are divided in two big groups – Museums which are institutional members of ICOM or are represented by individual members and Organizations. All the museums in this book are distributed by regional principle. Organizations are structured in profile groups Central region 192 Volga river region 224 Many thanks to all the museums who offered their help and assistance in the making of this collection South of Russia 258 Special thanks to Urals 270 Museum creation and consulting Culture heritage security in Russia with 3M(tm)Novec(tm)1230 Siberia and Far East 284 © ICOM Russia, 2012 Organizations 322 © K. Novokhatko, A. Gnedovsky, N. Kazantseva, O. Guzewska – compiling, translation, editing, 2012 [email protected] www.icom.org.ru © Leo Tolstoy museum-estate “Yasnaya Polyana”, design, 2012 Moscow MOSCOW A. N. SCRiAbiN MEMORiAl Capital of Russia. Major political, economic, cultural, scientific, religious, financial, educational, and transportation center of Russia and the continent MUSEUM Highlights: First reference to Moscow dates from 1147 when Moscow was already a pretty big town.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Annual Report 2008 – 2009
    O L D S T U R B R I D G E Summer 2009 Special Annual VILLAGE Report Edition Visitor 2008-2009 2008--2009 Momentum and More The History of Fireworks Farms, Families, and Change Cooking with OSV Summer Events a member magazine that keeps you coming back Old Sturbridge Village, a museum and learning resource of 2008-2009 Building Momentum New England life, invites each visitor to find meaning, pleasure, a letter from President Jim Donahue relevance, and inspiration through the exploration of history. to our newly designed V I S I T O R magazine. We hope that you will learn new things and come to visit t is no secret around the Village that I like to keep my eye on the “dashboard” – a set of key the Village soon. There is always something fun to do at indicators that I am consistently checking to make sure we are steering OSV in the right direction. In fact, Welcome O l d S T u R b ri d g E V I l l a g E . I take a lot of good-natured kidding about how often I peek at the attendance figures each day, eager to see if we beat last year’s number. And I have to admit that I get energized when the daily mail brings in new donations, when the sun is shining, the parking lot is full, when I can hear happy children touring the Village, and the visitor comments are upbeat and favorable. Volume XlIX, No. 2 Summer 2009 Special Annual Report Edition I am happy to report these indicators have been overwhelmingly positive during the past year – solid proof that Old Sturbridge Village is building on last year’s successes and is poised to finish this decade much stronger There is nothing quite like learning about history from than when it started.
    [Show full text]
  • List of Targets for the Lunar II Observing Program (PDF File)
    Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc.
    [Show full text]
  • The Lilac Cube
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-21-2004 The Lilac Cube Sean Murray University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Murray, Sean, "The Lilac Cube" (2004). University of New Orleans Theses and Dissertations. 77. https://scholarworks.uno.edu/td/77 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. THE LILAC CUBE A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Fine Arts in The Department of Drama and Communications by Sean Murray B.A. Mount Allison University, 1996 May 2004 TABLE OF CONTENTS Chapter 1 1 Chapter 2 9 Chapter 3 18 Chapter 4 28 Chapter 5 41 Chapter 6 52 Chapter 7 62 Chapter 8 70 Chapter 9 78 Chapter 10 89 Chapter 11 100 Chapter 12 107 Chapter 13 115 Chapter 14 124 Chapter 15 133 Chapter 16 146 Chapter 17 154 Chapter 18 168 Chapter 19 177 Vita 183 ii The judge returned with my parents.
    [Show full text]