MPIA Currently Employs a Staff of Approximately 160, Including 43 Scientists, 37 Junior and Visiting Scientists, Together with 80 Technical and Administrative Staff

Total Page:16

File Type:pdf, Size:1020Kb

MPIA Currently Employs a Staff of Approximately 160, Including 43 Scientists, 37 Junior and Visiting Scientists, Together with 80 Technical and Administrative Staff Max-Planck-Institut für Astronomie Heidelberg-Königstuhl Annual Report 1998 Max-Planck-Institut für Astronomie Heidelberg-Königstuhl Annual Report Das Max-Planck-Institut für Astronomie Managing Directors: Prof. Steven Beckwith (until 31. 8. 1998), Prof. Immo Appenzeller (as of 1.8.1998) Academic Members, Governing Body, Directors: Prof. Immo Appenzeller (as of 1.8.1998, temporary), Prof. Steven Beckwith, (on sabbatical leave as from 1. 9. 1998), Prof. Hans-Walter Rix (as of 1. 1. 1999). Emeritus Academic Members: Prof. Hans Elsässer, Prof. Guido Münch External Academic Members: Prof. Immo Appenzeller, Prof. Karl-Heinz Böhm, Prof. George H. Herbig Scientific Oversight Committee: Prof. R. Bender, Munich; Prof. R.-J. Dettmar, Bochum; Prof. G. Hasinger, Potsdam; Prof. P. Léna, Meudon; Prof. M. Moles Villamante, Madrid; Prof. F. Pacini, Florence; Prof. K.-H. Schmidt, Potsdam; Prof. P.A. Strittmatter, Tucson; Prof. S.D.M. White, Garching; Prof. L. Woltjer, St. Michel l’Observatoire. The MPIA currently employs a staff of approximately 160, including 43 scientists, 37 junior and visiting scientists, together with 80 technical and administrative staff. Students of the Faculty of Physics and Astronomy of the University of Heidelberg work on dissertations at degree and doctorate level in the Institute. Apprentices are con- stantly undergoing training in the Institute’s workshops. Anschrift: MPI für Astronomie, Königstuhl 17, D-69117 Heidelberg. Telephone: 0049-6221-5280, Fax: 0049-6221-528246. E-mail: Name@mpia-hd.mpg.de, Anonymous ftp: ftp.mpia-hd.mpg.de Isophot Datacenter: phthelp@mpia-hd.mpg.de. Internet: http://www.mpia-hd.mpg.de Calar Alto Observatory Address: Centro Astronomico Hispano Aleman, Calle Jesus Durbán Remón 2/2, E-04004 Almería, Spain Telephone: 0034-50-230988, -632500, Fax: 0034-50-632504, E-mail: name@caha.es Publication Information © 2000 Max-Planck-Institut für Astronomie, Heidelberg All rights reserved Printed in Germany Editors: Dr. Jakob Staude, Prof. Dr. Immo Appenzeller Text: Dr. Thomas Bührke Illustrations: MPIA and others Graphics and picture editing: Dipl. Phys. Axel M. Quetz Layout: Josef Hegele, Dossenheim Printing and Production: Colordruck, Leimen ISSN 1437-2924 Contents I General . 5 IV Scientific Work . 47 The MPIA’s Research Goals . 5 Scientific Questions . 8 IV.1 Galactic Astronomy. 47 Galactic Research . 8 Young Double and Multiple Stars. 47 Extragalactic Research . 9 Speckle holography in the Orion nebula . 47 The Solar System . 9 An example of star formation: the Trapezium Cluster. 50 Brown Dwarfs . 51 II Highlights . 11 From a molecular cloud to a star. 51 Kinematics of bipolar jets from young stars . 54 II.1 Disks around young and old stars . 11 Bipolar outflows and equatorial disks . 54 The Vega phenomenon . 11 Movement of jet knots . 54 The rule or the exception? . 13 Jets in the case of »old« T-Tauri stars as well . 59 The precedence case of Beta Pictoris . 14 Eta Carinae and the Homunculus nebula. 59 Dusty disks in double stars . 16 The eventful phase of Luminous Blue Variables . 60 Speckle polarimetry in the infrared. 16 Three-phase model for Eta Carinae . 60 The young system Haro 6-37 . 18 IV.2 Extragalactic Astronomy . 64 Galaxies in the young universe . 64 II.2 Quasars and radio galaxies . 20 Star birth in young galaxies . 64 The unified scheme on the test bench . 20 EROs in the infrared sky. 66 The unified scheme for active galaxies . 20 Cold dust in galaxies . 68 Observations with ISOPHOT in the far infrared . 21 Are spiral galaxies transparent? . 68 Polarimetry of quasar 3C 279 . 22 The Andromeda galaxy in the far infrared. 68 The unusual dwarf galaxy NGC 205 . 71 II.3 Evolution of Dwarf Galaxies . 24 The »Cloud Liquid« model. 24 IV.3. The Solar System . 73 Results from the simulations. 25 Asteroids as infrared standards . 73 Hot supernova bubbles . 28 Standard light sources for the infrared. 73 The thermal asteroid model and ISOPHOT data . 74 Polarisation measurements on asteroids . 76 III Development of Instruments . 33 Variations in the solar wind . 77 The Wide-Field Imager on the 2 m telescope Coronal holes and mass eruptions . 77 on La Silla . 33 Old HELIOS data newly analysed . 78 ALFA, adaptive optics with an artificial Star . 38 MOSCA – Multi-Object Spectrograph for Calar Alto 41 OMEGA-Prime – a near Infrared Camera Staff . 83 for Calar Alto . 42 Working Groups and scientifc Cooperation. 84 OMEGA-Cass – Spectrometer and camera for the infrared for Calar Alto . 43 Cooperation with industrial Firms. 86 CONICA – High resolution near-infrared camera Teaching activities . 88 for the VLT. 44 Public Lectures . 88 MIDI – Infrared Interferometer for the VLT . 44 Conferences. 89 PACS – Infrared Camera for FIRST Service in Committees. 90 (Far Infrared Space Telescope) . 45 Publications . 85 5 I General The MPIA’s Research Goals optimisation of the telescopes’ capabilities: now that the ALFAadaptive optical system has become operational, the In 1967, the Senate of the Max Planck Society decided 3.5 metre telescope is once again at the forefront of tech- to establish the Max Planck Institute for Astronomy in nological development (Chapter III). Other aspects inclu- Heidelberg with the aim of restoring astronomical research de the development of new measuring instruments in in Germany to a leading global position after the major set- Heidelberg, the preparation of observation programmes backs it had suffered due to two World Wars. Two years and the subsequent data analysis. A substantial part of the later, the Institute commenced its work in temporary Institute’s work is devoted to building new instruments for accommodation on the Königstuhl, under the direction of the telescopes (Chapter III). The MPIA is equipped with Hans Elsässer. The Institute moved into its new building in 1975 (Figure I.1). A long-term goal of the newly establis- hed MPIA was to build up and operate two high-perfor- mance observatories, one in the northern hemisphere and one in the southern hemisphere. In 1970, after an intensive search for a location, the choice for the northern hemisphe- re was made in favour of Calar Alto Mountain (height: 2168 metres) in the province of Almería, southern Spain. This European location offers good climatic and meteoro- logical conditions for astronomical observations. 1972 saw the establishment of the »Deutsch-Spanisches Astro- nomisches Zentrum / German-Spanish Astronomical Centre« (DSAZ), known in short as the Calar Alto Observatory. The complex technological problems associated with the planning and construction of the telescopes were sol- Figure I.1: The Max Planck Institute of Astronomy on the ved in cooperation with Carl Zeiss of Oberkochen and Königstuhl in Heidelberg. other companies. In this way, a large number of firms have acquired know-how which has helped them to secure lea- ding positions on the world market. Between 1975 and 1984, the 1.2 metre reflector finan- ced by the Deutsche Forschungsgemeinschaft as well as the 2.2 metre and 3.5 metre telescopes started operation on Calar Alto. The 80 centimetre Schmidt reflector was trans- ferred from the Hamburg Observatory. There is also a Spanish 1.5 metre telescope on the site, operated by the Observatorio Nacional de Madrid. Figure I.2 shows a view of the telescope domes on Calar Alto. The original plans to construct a southern observatory on the Gamsberg in Namibia could not be implemented for political reasons. The 2.2 metre telescope which was intended for this pur- pose has been loaned to the European Southern Observatory for 25 years. Since 1984, it has been in opera- Figure I.2: View from the south of the Calar Alto Observatory tion on La Silla Mountain in Chile, with 25 % of its obser- in southern Spain, with its five telescope domes. From left ving time available to the astronomers of the Max-Planck to right: the building for the Spanish 1.5 metre telescope, Society. the Schmidt reflector, the 1.23 metre telescope, the 2.2 metre At present the operation of the Calar Alto Observatory telescope, and the 43 metre high dome of the 3.5 metre tele- is a central task for the MPIA. This includes the constant scope. 6 I General high-tech precision mechanics and electronics workshops for this purpose. With the Calar Alto Observatory, the MPIA has one of the two European observatories with the highest performance. Research concentrates on the »clas- sical« visible region of the spectrum and on the infrared region. In addition, the MPIA has been engaged in space-based research ever since it was established. This was associated with an early start on infrared astronomy which has played a particularly important part in the Institute’s later deve- lopment as a whole. In the 1970's, two photometers were developed and built at the MPIA, which flew on board the two solar probes Helios 1 and Helios 2, where they worked faultlessly. The fact that the measurements obtained at that time contain information that is still valuable today is shown by a recent data analysis which led to the detection of fluctuations in the solar wind (Chapter IV.3). A more or less parallel development to the Helios mission involved the THISBE balloon gondola (Telescope of Heidelberg for Infrared Studies by Balloon-borne Experiments). This alti- tude research balloon was designed to carry telescopes and equipment weighing as much as 400 kilograms up to a height of 40 kilometres, where long wavelength infrared observations are possible. Four telescopes with apertures of 6 to 20 centimetres were built in the workshops of the MPIA and were deployed on THISBE. Scientific aspects deserving particular emphasis here include the first obser- vation of the central region of the Milky Way at a wave- length of 2.4 mm wavelength, and the measurement of the airglow, due to the emission of the OH-radical in the atmosphere.
Recommended publications
  • Study of Photometric Phase Curve: Assuming a Cellinoid Ellipsoid Shape of Asteroid (106) Dione
    RAA 2017 Vol. X No. XX, 000–000 R c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Study of photometric phase curve: assuming a Cellinoid ellipsoid shape of asteroid (106) Dione Yi-Bo Wang1,2,3, Xiao-Bin Wang1,3,4, Donald P. Pray5 and Ao Wang1,2,3 1 Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; wangyb@ynao.ac.cn, wangxb@ynao.ac.cn 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China 4 Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China 5 Sugarloaf Mountain Observatory, South Deerfield, MA 01373, USA Received 2017 May 9; accepted 2017 May 31 Abstract We carried out the new photometric observations of asteroid (106) Dione at three apparitions (2004, 2012 and 2015) to understand its basic physical properties. Based on a new brightness model, the new photometric observational data and the published data of (106) Dione were analyzed to characterize the morphology of Dione’s photometric phase curve. In this brightness model, Cellinoid ellipsoid shape and three-parameter (H, G1, G2) magnitude phase function system were involved. Such a model can not only solve the phase function system parameters of (106) Dione by considering an asymmetric shape of asteroid, but also can be applied to more asteroids, especially for those asteroids without enough photometric data to solve the convex shape. Using a Markov Chain Monte Carlo (MCMC) method, +0.03 +0.077 Dione’s absolute magnitude H =7.66−0.03 mag, and phase function parameters G1 =0.682−0.077 and +0.042 G2 = 0.081−0.042 were obtained.
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • Ground-Based Visible Spectroscopy of Asteroids to Support the Development of an Unsupervised Gaia Asteroid Taxonomy A
    Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid taxonomy A. Cellino, Ph. Bendjoya, M. Delbo’, Laurent Galluccio, J. Gayon-Markt, P. Tanga, E.F. Tedesco To cite this version: A. Cellino, Ph. Bendjoya, M. Delbo’, Laurent Galluccio, J. Gayon-Markt, et al.. Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid tax- onomy. Astronomy and Astrophysics - A&A, EDP Sciences, 2020, 10.1051/0004-6361/202038246. hal-02942763 HAL Id: hal-02942763 https://hal.archives-ouvertes.fr/hal-02942763 Submitted on 12 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. TNGspectra2ndrev c ESO 2020 July 28, 2020 Ground-based visible spectroscopy of asteroids to support development of an unsupervised Gaia asteroid taxonomy A. Cellino1, Ph. Bendjoya2, M. Delbo’3, L. Galluccio3, J. Gayon-Markt3, P. Tanga3, and E. F. Tedesco4 1 INAF, Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy e-mail: alberto.cellino@inaf.it 2 Université de la Côte d’Azur - Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Campus Valrose Nice, Nice Cedex 4, France e-mail: bendjoya@oca.eu 3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, CS34229, 06304, Nice Cedex 4, France e-mail: Marco.Delbo@oca.eu, Laurent.Galluccio@oca.eu, Paolo.Tanga@oca.eu 4 Planetary Science Institute, Tucson, AZ, USA e-mail: eft@psi.edu Received ..., 2020; accepted ..., 2020 ABSTRACT Context.
    [Show full text]
  • Sciences, Is the Discovery of Twenty-Two Minor Planets Commonly Known As the Watson Asteriods
    ASTRONOMY: A. O. LEUSCHNER 67 ADMISSIONS TO SICK REPORT-Concluded UNITED STATES NUMBERS opFr White Colored INTERNA- TIONAL CLASSIFICA- Mean strength..................................................... 545,518 13,150 TIONT Causes of admission to sick report Ratio perstrength1000 of mean 00-02, 07,15, 16,24- 27,29- 31,49, 57,58, 60,61, Traumatisms, others ............................... 9.14 10.04 63-65, 70-72, 74,76- 78,82- 84,97- 99 80 Sunstroke.. 0.04 0.08 Total for diseases................................. 882.51 1064.41 Total for external causes.. 91.69 90.42 Grand total................... ................ 974.19 1154.83 PERTURBATIONS AND TABLES OF THE MINOR PLANETS DISCOVERED BY JAMES C. WATSON BY ARMIN 0. LEUSCHNER BERKELEY ASTRONOMICAL DEPARTMENT, UNIVERSITY OF CALIFORNIA Read before the Academy, April 16, 1916 Among the many important contributions to Astronomical Science by James C. Watson, one of the original members of the National Academy of Sciences, is the discovery of twenty-two minor planets commonly known as the Watson asteriods. The first of these, (79) Eurynome, was discovered at Ann Arbor on September 14, 1863, and the last, (179) Klytaemnestra, on November 11, 1877, three years before his death. By his will a fund was bequeathed in trust to the National Academy of Sciences for the purpose of promoting astronomical research. One of the objects specifically designated was the construction of tables of the perturbations of the minor planets dis- covered by the testator. From the beginning Prof. Simon Newcomb was a Downloaded by guest on September 30, 2021 68 ASTRONOMY: A. O. LEUSCHNER member of the board of Watson Trustees; later he became chairman of the board, and remained in that capacity on the board until his death in 1908, being succeeded by Prof.
    [Show full text]
  • Jahresbericht 2010 Mitteilungen Der Astronomischen Gesellschaft 94 (2013), 583–627
    Jahresbericht 2010 Mitteilungen der Astronomischen Gesellschaft 94 (2013), 583–627 Potsdam Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam Tel. 03317499-0, Telefax: 03317499-267 E-Mail: info@aip.de WWW: http://www.aip.de Beobachtungseinrichtungen Robotisches Observatorium STELLA Observatorio del Teide, Izaña E-38205 La Laguna, Teneriffa, Spanien Tel. +34 922 329 138 bzw. 03317499-633 LOFAR-Station DE604 Potsdam-Bornim D-14469 Potsdam Tel. 03317499-291, Telefax: 03317499-352 Observatorium für Solare Radioastronomie Tremsdorf D-14552 Tremsdorf Tel. 03317499-291, Telefax: 03317499-352 Sonnenobservatorium Einsteinturm Telegrafenberg, D-14473 Potsdam Tel. 0331288-2303/-2304, Telefax: 03317499-524 0 Allgemeines Das Leibniz-Institut für Astrophysik Potsdam (AIP) ist eine Stiftung bürgerlichen Rechts zum Zweck der wissenschaftlichen Forschung auf dem Gebiet der Astrophysik. Als außer- universitäre Forschungseinrichtung ist es Mitglied der Leibniz-Gemeinschaft. Seinen For- schungsauftrag führt das AIP im Rahmen von nationalen und internationalen Kooperatio- nen aus. Die Beteiligung am Large Binocular Telescope auf dem Mt Graham in Arizona, dem größten optischen Teleskop der Welt, verdient hierbei besondere Erwähnung. Neben seinen Forschungsarbeiten profiliert sich das Institut zunehmend als Kompetenzzentrum im Bereich der Entwicklung von Forschungstechnologie. Vier gemeinsame Berufungen mit der Universität Potsdam und mehrere außerplanmäßige Professuren und Privatdozenturen an Universitäten in der Region und
    [Show full text]
  • Hydrated Minerals on Asteroids: the Astronomical Record
    Hydrated Minerals on Asteroids: The Astronomical Record A. S. Rivkin, E. S. Howell, F. Vilas, and L. A. Lebofsky March 28, 2002 Corresponding Author: Andrew Rivkin MIT 54-418 77 Massachusetts Ave. Cambridge MA, 02139 asrivkin@mit.edu 1 1 Abstract Knowledge of the hydrated mineral inventory on the asteroids is important for deducing the origin of Earth’s water, interpreting the meteorite record, and unraveling the processes occurring during the earliest times in solar system history. Reflectance spectroscopy shows absorption features in both the 0.6-0.8 and 2.5-3.5 pm regions, which are diagnostic of or associated with hydrated minerals. Observations in those regions show that hydrated minerals are common in the mid-asteroid belt, and can be found in unex- pected spectral groupings, as well. Asteroid groups formerly associated with mineralogies assumed to have high temperature formation, such as MAand E-class asteroids, have been observed to have hydration features in their reflectance spectra. Some asteroids have apparently been heated to several hundred degrees Celsius, enough to destroy some fraction of their phyllosili- cates. Others have rotational variation suggesting that heating was uneven. We summarize this work, and present the astronomical evidence for water- and hydroxyl-bearing minerals on asteroids. 2 Introduction Extraterrestrial water and water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. The presence of water is thought to be one of the necessary conditions for the formation of life as 2 we know it.
    [Show full text]
  • 241 — 12 January 2013 Editor: Bo Reipurth (Reipurth@Ifa.Hawaii.Edu)
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 241 — 12 January 2013 Editor: Bo Reipurth (reipurth@ifa.hawaii.edu) 1 List of Contents The Star Formation Newsletter Interview ...................................... 3 My Favorite Object ............................ 5 Editor: Bo Reipurth reipurth@ifa.hawaii.edu Perspective .................................... 7 Technical Editor: Eli Bressert Abstracts of Newly Accepted Papers .......... 10 eli.bressert@csiro.au New Jobs ..................................... 42 Technical Assistant: Hsi-Wei Yen Meeting Announcements ...................... 44 hwyen@asiaa.sinica.edu.tw Upcoming Meetings .......................... 45 Editorial Board Short Announcements ........................ 47 Joao Alves Alan Boss Jerome Bouvier Lee Hartmann Cover Picture Thomas Henning Paul Ho The Cygnus X region is one of the richest known Jes Jorgensen regions of star formation in the Galaxy. Because Charles J. Lada of the high extinction to the region, it is rather Thijs Kouwenhoven unremarkable at optical wavelengths, but in the in- Michael R. Meyer frared the full scale of star formation activity is re- Ralph Pudritz vealed. The image shows a Spitzer mosaic, from Luis Felipe Rodr´ıguez the Spitzer Cygnus X Legacy Survey, of a region Ewine van Dishoeck several pc wide at the assumed distance of 1.7 kpc Hans Zinnecker (blue 3.6 µm, aqua 4.5 µm, green 8 µm, red 24 µm). The pillars and globules face towards the center of The Star Formation Newsletter is a vehicle for the Cygnus OB2 association, which harbors about fast distribution of information of interest for as- a hundred O stars and many thousands of young tronomers working on star and planet formation low mass stars.
    [Show full text]
  • Iso and Asteroids
    r bulletin 108 Figure 1. Asteroid Ida and its moon Dactyl in enhanced colour. This colour picture is made from images taken by the Galileo spacecraft just before its closest approach to asteroid 243 Ida on 28 August 1993. The moon Dactyl is visible to the right of the asteroid. The colour is ‘enhanced’ in the sense that the CCD camera is sensitive to near-infrared wavelengths of light beyond human vision; a ‘natural’ colour picture of this asteroid would appear mostly grey. Shadings in the image indicate changes in illumination angle on the many steep slopes of this irregular body, as well as subtle colour variations due to differences in the physical state and composition of the soil (regolith). There are brighter areas, appearing bluish in the picture, around craters on the upper left end of Ida, around the small bright crater near the centre of the asteroid, and near the upper right-hand edge (the limb). This is a combination of more reflected blue light and greater absorption of near-infrared light, suggesting a difference Figure 2. This image mosaic of asteroid 253 Mathilde is in the abundance or constructed from four images acquired by the NEAR spacecraft composition of iron-bearing on 27 June 1997. The part of the asteroid shown is about 59 km minerals in these areas. Ida’s by 47 km. Details as small as 380 m can be discerned. The moon also has a deeper near- surface exhibits many large craters, including the deeply infrared absorption and a shadowed one at the centre, which is estimated to be more than different colour in the violet than any 10 km deep.
    [Show full text]
  • Annual Report 2012: A
    Research Institute Leiden Observatory (Onderzoekinstituut Sterrewacht Leiden) Annual Report Sterrewacht Leiden Faculty of Mathematics and Natural Sciences Leiden University Niels Bohrweg 2 Postbus 9513 2333 CA Leiden 2300 RA Leiden The Netherlands http://www.strw.leidenuniv.nl Cover: During the past 10 years, characterization of exoplanet atmospheres has been confined to transiting planets. Now, thanks to a particular observational technique and to a novel data analysis designed by astronomers of Leiden Observatory, it is possible to study the atmospheres of planets that do not transit, which represent the majority of known exoplanets. The first of its kind now to be characterized is τ Bo¨otisb (artist impression on the cover). Due to the very high resolution of the CRIRES spectrograph at the VLT, it was possible to detect molecular absorption from CO at 2.3 micron in the dayside spectrum of this planet, and to measure the Doppler shift due to its motion along the orbit. This yielded the planet mass and the orbital inclination, which were unknown before. Recently, using this technique also CO from 51 Pegasi b (the first planet discovered around a main-sequence star), and HD 189733 b were successfully detected. Ultimately, using ground- based high-resolution spectroscopy on the next-generation of telescopes (such as E-ELT) biomarkers may be detected in terrestrial planets orbiting M-dwarfs. An electronic version of this annual report is available on the web at http://www.strw.leidenuniv.nl/research/annualreport.php Production Annual Report 2012: A. van der Tang, E. Gerstel, A.S. Abdullah, K.M. Maaskant, J.
    [Show full text]
  • ABSTRACT Title of Dissertation: WATER in the EARLY SOLAR
    ABSTRACT Title of Dissertation: WATER IN THE EARLY SOLAR SYSTEM: INFRARED STUDIES OF AQUEOUSLY ALTERED AND MINIMALLY PROCESSED ASTEROIDS Margaret M. McAdam, Doctor of Philosophy, 2017. Dissertation directed by: Professor Jessica M. Sunshine, Department of Astronomy This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data.
    [Show full text]
  • Bibcode Main Author Title Full Author List 2015A&A...573L...4L Liseau, R
    BibCode Main Author Title Full Author list 2015A&A...573L...4L Liseau, R. ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm Liseau, R.; Vlemmings, W.; Bayo, A.; Bertone, E.; Black, J. H.; del Burgo, wavelength C.; Chavez, M.; Danchi, W.; De la Luz, V.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Justtanont, K.; Krivov, A.; Marshall, J. P.; Mora, A.; Montesinos, B.; Nyman, L. -A.; Olofsson, G.; Sanz-Forcada, J.; Thébault, P.; White, G. J. 2015A&A...575A..19R Riviere-Marichalar, P. Herschel-PACS observations of [OI] and H<SUB>2</SUB>O in Chamaeleon II Riviere-Marichalar, P.; Bayo, A.; Kamp, I.; Vicente, S.; Williams, J. P.; Barrado, D.; Eiroa, C.; Duchêne, G.; Montesinos, B.; Mathews, G.; Podio, L.; Dent, W. R. F.; Huélamo, N.; MerÃ-n, B. 2015A&A...575A..51L Liu, C. Quest for the lost siblings of the Sun Liu, C.; Ruchti, G.; Feltzing, S.; MartÃ-nez-Barbosa, C. A.; Bensby, T.; Brown, A. G. A.; Portegies Zwart, S. F. 2015A&A...574A.114V Varenius, E. Subarcsecond international LOFAR radio images of the M82 nucleus at 118 MHz and 154 MHz Varenius, E.; Conway, J. E.; MartÃ--Vidal, I.; Beswick, R.; Deller, A. T.; Wucknitz, O.; Jackson, N.; Adebahr, B.; Pérez-Torres, M. A.; Chyży, K. T.; Carozzi, T. D.; Moldón, J.; Aalto, S.; Beck, R.; Best, P.; Dettmar, R. - J.; van Driel, W.; Brunetti, G.; Brüggen, M.; Haverkorn, M.; Heald, G.; Horellou, C.; Jarvis, M. J.; Morabito, L. K.; Miley, G. K.; Röttgering, H.
    [Show full text]