Seventh International Seminar

Total Page:16

File Type:pdf, Size:1020Kb

Seventh International Seminar Welcome Seventh International Seminar by GEECO Enercon Pvt. Limited, Tiruchirapalli, India M Somasundaram Technical Consultant for Boilers Former General Manager / BHEL +919443259553; [email protected] Major Job References – Technical Consultancy on Boilers of Thermal Power Plants: RCA and damages Assessment of boiler explosion- Annupur Unit-2, 600 MW, MBPMPL Review and RCA of boiler explosion- Unit-1, 300 MW at Bandhakhar, Korba Analysis of sonic vibration in 3x67.5 MW boilers at Kalinga Nagar Unburnt carbon and NOx level reduction optimisation in Units 2x500 MW boilers at Maithon Tube failure analysis of 4x600 MW boilers at Vedanta Jharsuguda Combustion optimisation for firing varying qualities of coal in 67.5 and 120 MW boilers at Jojobera Indonesian coal firing in Unit-5, 500 MW and Unit-8, 250 MW, Tata Power Company, Trombay Reheater Metal Temperature and Tube failure analysis of 2x500 MW boilers at Maithon Tube failure presentations, discussions and analysis in the Workshop for O&M Personnel of various Utilities & CPPs held at Korba Presentations, discussions and training of O&M personnel of Adani Power Limited on Boiler and Auxiliaries, Coal, Performance/Combustion Optimisation, Tube failures, Boiler emergencies, Emission control, Inspection, etc. Tube failure analysis of 4x135 MW boilers at BALCO Korba Boiler Performance analysis and recommendations for combustion optimisation of NTPC Farakka #2, 200 MW boiler Boiler Tube Leak analysis of 3x660MW boilers at Talwandi Sabo Power Limited Mill system performance analysis at 5x660MW Mundra Thermal Power Project Combustion behaviour of boilers with different coals and upgradation to enhance efficiency of 2x90 T/hr boilers at DCM Shriram Kota Optimization of Performance, O&M issues of Boiler and Airheater Boiler • In a thermal power plant boiler has the role of converting the Chemical energy available in Coal/fuel to Heat energy in steam. • The heat energy in steam is converted to Electricity by a Turbo-generator Heat Balance for Steam Process Energy Input Steam @ pressure Feed Water Useful Energy Energy Input STEAM PROCESS Air &Fuel Output Energy Loss - Energy Loss - Energy Loss - Flue Gas Blow Down Piping Friction, Water Equipment, etc. Energy Output = Energy Input - Losses Optimization Of Boiler Two Main Factors •Thermal Efficiency- The conversion of chemical heat in fuel to production of steam. oHigher thermal efficiency will reduce fuel cost. •Auxiliary Power Consumption - by Fans, mills etc. oReduction in auxiliary power will lead to increase in net power available (NET POWER= power generated - house auxiliary power consumption). Boiler Efficiency – Indirect Method • Efficiency= 100 - Losses in % Summary of losses in Boiler Controllable Dry gas Loss % 5.542 Combustible Loss % 1.453 Carbon Monoxide Loss % 0.065 Mill Reject Loss % 0.049 % 7.109 Un-Controllable Moisture Loss % 6.523 Radiation Loss % 0.270 Air Moisture Loss % 0.200 Sensible Heat Loss % 0.415 % 7.408 Total Losses % 14.517 Efficiency (100-Losses) % 85.483 Controllable losses effected by APH sizing & performance • Dry gas loss - APH outlet flue gas temperature and leakage • Unburnt carbon loss - Air temperature leaving APH DRY GAS LOSS This is the heat carried away by Flue gas at boiler outlet The Loss is directly proportional to • Flue Gas Temperature and • Flue Gas quantity High Flue Gas Temperature Every 20 deg C increase in exit gas temp. reduces the boiler efficiency by. Improper 1% combustion air regime setting . Unclean heat transfer surfaces . Damaged / worn-out / corroded air heater elements . Air heater leakage more . Excessive entry of cold seal air, cooling air, etc. DRY GAS LOSS - Flue Gas Temperature Reduction methods . Operate the boiler at correct excess air. (Usually 20 % for coal) . Cleanliness of boiler surfaces . Good combustion of fuel. Reduction of tempering air to mill. Reduction in air ingress . Addition of heat transfer surface in economizer / redesign of second pass . Cleaning of air heater surfaces and proper heating elements . Addition of heating elements in airheater – if space is available / future provision is made DRY GAS LOSS - Flue Gas Quantity Reduction Methods •Operate with proper Excess Air •Avoid ingress of Air •Attend to Air Heater Leakages regularly Carbon Loss Reduction • Good burner maintenance • Check coal property and tune combustion • Ensuring consistent mill fineness. Replace Worn-out mill parts – classifier vane, rolls/bull ring segments, classifier cone • Proper secondary air adjustment • Reducing primary air to the minimum most possible • Cut-out oil support at higher loads where coal flame is stable. • Keep boiler heat transfer surface clean • Air temperature leaving APH Auxiliary Power Consumption The Major Auxiliaries consuming Power in Boilers are .Forced Draft Fans .Primary Air Fans .Induced Draft Fans .Pulverizing Mills Factors Affecting Auxiliary Power ID Fans PA Fans • AH Leak • AH Leakage • Gas Temperature • PA Header Pr. • Duct Leakages • Mill Air Flow • Excess Air • Pressure Loss • Load/ Plant Heat Rate o AH Choking • Draught Loss Mill o AH Choking • Coal Qty. FD Fans o GCV • AH Leak o Load/ Plant Heat Rate • Wind Box Pr. • Coal • Excess Air o Moisture • Load/ Plant Heat Rate o HGI • Pressure Loss • Coal Fineness o AH Choking • Mill Condition o SCAPH Choking Auxiliary Power Consumption Major reasons for increase in auxiliary power consumption are 1. High excess air Operation 2. Air ingress in boiler 3. Air heater leakage / Choking 4. Higher PA fan outlet pressure 5. Coal pulverization too fine Capacity Reduction in a Boiler Fuel input Draught system • Low CV coal • ID fan limitations • Milling capacity o Pressure drops high o Grinding capacity . AH choking o Drying capacity . Chimney back pressure o Carrying capacity high o Drive capacity o High volume . AH leakages Metal temperatures high . Duct leakages • High spray requirements . High gas temperatures • Fouling of surfaces • Worn out impellers Combustion optimization Combustion optimization In a steam generator combustion optimization means well tuning of fuel and air distribution to get the best flame temperature. Combustion optimization Objectives . Safety of personnel and equipment . To protect equipment from failures . To produce steam at the required parameters and quality . To achieve optimum efficiency and economy during operation Combustion Diagram Plane of Combustion Completion Point at which combustion should be completed Flame Pattern Unacceptable Combustion Basic requirements for optimizing . Coal feeder and millcombustion should be in good operating condition . Mill classifier should be free to operate with uniform opening of all vanes . Coal-air temperature, mill airflow and total airflow are accurately measured, and control systems should be in working condition . All the burner nozzle assemblies are in good condition and set properly to ensure equal movement in all elevations . SADC system in auto mode of operation . All the flame scanners are checked, tested and the flame scanning system should be in good working condition Secondary Air Damper Control System Auxiliary Air Damper 120 Fuel Air Damper Control 100 Control 80 to keep the flame front at a 120 to maintain wind box to furnace DP 60 desired distance 40 100 20 80 fuel air damper % damper air fuel 0 60 0 20 40 60 80 100 120 mmwc 40 fuel input, % maximum mill capacity 20 Furnace to W.Box DP, 0 Over Fire Air Damper Control 30 45 60 100 to control NOx Boiler load, % Upper Lower 100 0 50 75 100 OFA damper opening % opening damper OFA Boiler load, % Optimized Combustion 1. Combustion process should be stable as indicated by minimum furnace draft fluctuation. 2. Flame scanner pickup with adequate flame intensity should be reached. 3. Unburnt levels in bottom ash and fly ash should be minimum. 4. Flame condition looked through furnace peepholes of each elevation/ corner to ensure proper anchoring of flame front. (about 300-500 mm from nozzle tip) 5. Look at the S panel for brightness, visibility, minimum falling of clinkers, etc. 6. Superheater and reheater spray levels should be within its limit. 7. Exit gas temperature should be within its desired limit (130 – 1400C), which depends on the boiler load. 8. Emission levels of SOx and NOx should be optimum. 9. Flame temperatures measured at various elevations / burner corners to be uniformly distributed across the elevations. Air Preheaters Air Preheaters Purpose: Recover heat from the hot flue gases that leave steam generating units – (the heat from the flue gas leaving the furnace is transferred to the incoming air supply from the FD fans and PA fans) Thus • Improving the boiler efficiency • Also, Provide the drying and transporting medium for pulverised coal Other advantages of Air Preheaters • Hot air improves stability of combustion • Intensified and improved combustion • Burning poor quality fuel efficiently • High heat transfer rate in the furnace • Less unburnt • Intensified combustion permits faster load variation Types of Air preheaters Recuperative Regenerative Tubular Air Preheater, Plate Type Air Ljungstrom Air Preheater and Preheater & Steam Coil Air Preheater Rothemuhle Air Preheater (SCAPH) Heat exchangers without storage Heat exchangers with storage Two fluids flow at different temperatures One heating surface is exposed at in a space separated by a solid partition certain intervals of time, first to a hot fluid and then to a cold one Heat is transferred by Convection & Surface of APH first removes heat Conduction through the separating wall from
Recommended publications
  • Use Feedwater Economizers for Waste Heat Recovery, Energy Tips
    ADVANCED MANUFACTURING PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery Suggested Actions ■■ Determine the stack temperature A feedwater economizer reduces steam boiler fuel requirements by transferring after the boiler has been tuned heat from the flue gas to incoming feedwater. Boiler flue gases are often to manufacturer’s specifications. rejected to the stack at temperatures more than 100°F to 150°F higher than The boiler should be operating the temperature of the generated steam. Generally, boiler efficiency can at close-to-optimum excess be increased by 1% for every 40°F reduction in flue gas temperature. By air levels with all heat transfer recovering waste heat, an economizer can often reduce fuel requirements by 5% surfaces clean. to 10% and pay for itself in less than 2 years. The table provides examples of ■■ Determine the minimum the potential for heat recovery. temperature to which stack gases Recoverable Heat from Boiler Flue Gases can be cooled subject to criteria such as dew point, cold-end Recoverable Heat, MMBtu/hr corrosion, and economic heat Initial Stack Gas transfer surface. (See Exhaust Temperature, °F Boiler Thermal Output, MMBtu/hr Gas Temperature Limits.) 25 50 100 200 ■■ Study the cost-effectiveness of installing a feedwater economizer 400 1.3 2.6 5.3 10.6 or air preheater in your boiler. 500 2.3 4.6 9.2 18.4 600 3.3 6.5 13.0 26.1 Based on natural gas fuel, 15% excess air, and a final stack temperature of 250˚F. Example An 80% efficient boiler generates 45,000 pounds per hour (lb/hr) of 150-pounds-per-square-inch-gauge (psig) steam by burning natural gas.
    [Show full text]
  • Performance Analysis of Air Preheater in 210Mw Thermal Power Station
    Manivel .J, Manimaran .L, Thiyagarajan .M, Satheeshkumar .P; International Journal of Advance Research, Ideas and Innovations in Technology. ISSN: 2454-132X Impact factor: 4.295 (Volume3, Issue2) Performance Analysis of Air Preheater in 210mw Thermal Power Station J. Manivel1 L. Manimaran2 M. Thiyagarajan3 Department of Mechanical Engineering, Department of Mechanical Engineering, Department of Mechanical Engineering, SNS College of Engineering, SNS College of Engineering, SNS College of Engineering, Coimbatore, TN, India Coimbatore, TN, India Coimbatore, TN, India P. Satheeshkumar4 Thiruppathi .R5 Department of Mechanical Engineering, SNS College of Department of Mechanical Engineering, SNS College of Engineering, Coimbatore, TN, India Engineering, Coimbatore, TN, India s Abstract: The efficiency of boiler in thermal power station is greatly depending on the utilization of waste heat in the flue gas by air pre heater and economizer. The increasing in efficiency of boiler can be achieved by increasing the performance of air pre heater and economizer. Enhancing heat transfer rate by changing profile of air pre heater will lead to increasing in performance of the air pre heater and economizer. The changing profile and increasing heat transfer area will increase the heat transfer rate. In 210MW Mettur thermal power station, notched flat profile is used as heat transfer area in air pre heater segment. In order to improve heat transfer rate, notched flat profile are replaced by double undulated profile and single seal are replaced by double seal. Hence heat loss in the air pre heater is minimized. The performance of economizer is enhanced by increasing the diameter of the coils. Hence the economizer and air pre heater absorbs additional heat from exhaust flue gas.
    [Show full text]
  • Designing and Maintaining Steam Coil Air Preheaters for Reliability And
    PLANT AUXILIARY SYSTEMS Designing and maintaining steam coil air preheaters for reliability and effectiveness If engineered well and drained properly, a simple finned-tube heat exchanger can help maximize a fossil-fueled power plant’s combustion efficiency, capacity, and air pollution reduction. Use the guidelines in this article ei- ther to return a disabled steam coil air preheater to service or to improve the performance of a unit that may have been wasting steam and money for years. By James R. Smith, Armstrong Heat Transfer Group team coil air preheaters (SCAPs) are sitions and the duct connection to the inlet there (Figure 4). Clogging and reduced per- found in most fossil-fueled utility and (cold end) of an RRAH. As opposed to being formance will be the undesirable outcome. Slarge industrial power plants in North bolted in place by duct flanges (Figure 2), Often (but unintentionally), the SCAP’s coils America. Their primary function is to heat units used in such a configuration are usu- serve as a convenient platform for mainte- combustion air before it enters a rotary re- ally drawer-mounted, for easier access and nance workers tasked with cleaning and in- generative air heater (POWER, April 2006, p. removal (Figure 3). specting the RRAH. 72) or a traditional tubular air heater. Wheth- Placing a SCAP ahead of the cold end Another undesirable consequence of er a rotary regenerative air heater (RRAH) (inlet side) of a RRAH, however, can invite placing a poorly constructed, specified, or or a traditional tubular heater is downstream, maintenance problems and shorten unit life.
    [Show full text]
  • Evaluation of Dry Fly-Ash Particles Causing Difficult Deposits for Acoustic Soot Blowing of Boilers
    UPTEC Q16 025 Examensarbete 30 hp December 2016 Evaluation of dry fly-ash particles causing difficult deposits for acoustic soot blowing of boilers Arvid Bo Cedervall Abstract Evaluation of dry fly-ash particles causing difficult deposits for acoustic soot blowing of boilers Arvid Bo Cedervall Teknisk- naturvetenskaplig fakultet UTH-enheten This thesis compares ash collected from different boilers cleaned using infrasound cleaning. The samples were evaluated from their physical properties, in an attempt to Besöksadress: find connections between the difficulty to remove ash and its physical appearance. To Ångströmlaboratoriet Lägerhyddsvägen 1 get a deeper understanding of the mechanisms behind adhesion and fouling, and Hus 4, Plan 0 possibly explain results from the study of the ash samples, a literature review was carried out. The ash was also evaluated to see if any connections could be drawn Postadress: between the physical properties of the ash and its fouling capabilities. A strong Box 536 751 21 Uppsala connection was found between ash density and its fouling capabilities. It was found that no dry ash with a density higher than 0.4 g/ml were difficult to remove with Telefon: infrasound cleaning, and no ash with lower density was easy to remove. The ash 018 – 471 30 03 density was calculated from a measurement of the weight of a certain volume of ash Telefax: on a scale. Optical microscopy was used to study the ash samples, and gave an 018 – 471 30 00 estimation of particle size, shape, and porosity. However, no clear connection could be observed with this method between the different samples and which were difficult Hemsida: to remove.
    [Show full text]
  • Improvement in Efficiency of Air Preheater in Boiler Tps- 1 Expansion
    IJRDO - Journal of Mechanical and Civil Engineering ISSN-2456-1479 IMPROVEMENT IN EFFICIENCY OF AIR PREHEATER IN BOILER TPS- 1 EXPANSION S.Sudhakar* C.M.Raguraman Department of Mechanical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar - 608002, India. e-mail: [email protected]. Abstract-- An air pre-heater is a general term to describe any The organization of this paper is as follows: device designed to heat air before another process (for Section I gives an Introduction and an outlay of the scope example, combustion in a boiler) with the primary objective of of the work. Proposed methodology is elaborated in increasing the thermal efficiency of the process. They may be Section II. Air and flue gas path is given in Section III, used alone or to replace a recuperative heat system or to and are described in Section V followed by the replace a steam coil. In particular, this project describes the combustion air pre-heaters used in large boilers found in conclusion in Section VI. thermal power stations producing electric power from e.g. fossil fuels, biomasses or waste. The purpose of the air pre- SCOPE THE WORK heater is to recover the heat from the boiler flue gas which increases the thermal efficiency of the boiler by reducing the After studying the journal papers mentioned above, it is useful heat loss of the flue gas in an regenerative pre-heater. understood that there are some leakages development in This project analysis how operation parameters of an the RAPH and maintenances of RAPH is to be considered regenerative air preheater can be optimized in order to for the improvement efficiency of the boiler shell and increase its efficiency and consequently the overall efficiency tube air preheater.
    [Show full text]
  • Incinerators
    EPA/452/B-02-001 Section 3 VOC Controls EPA/452/B-02-001 Section 3.2 VOC Destruction Controls EPA/452/B-02-001 Chapter 2 Incinerators William M. Vatavuk Innovative Strategies and Economics Group, OAQPS U.S. Environmental Protection Agency Research Triangle Park, NC 27711 Donald R. van der Vaart & James J. Spivey Research Triangle Institute Research Triangle Park, NC 27709 September 2000 Contents 2.1 Introduction ........................................................................................................................................... 2.-3 2.2 Process Description .............................................................................................................................................. 2-3 2.2.1 Thermal Incinerators .................................................................................................................. 2-6 2.2.2 Catalytic Incinerators ............................................................................................................... 2-10 2.2.3 Other Considerations: Packaged versus Field-Erected Units, Auxiliary Equipment ............... 2-13 2.2.4 Technology Comparison .......................................................................................................... 2-15 2.3 General Treatment of Material and Energy Balances ............................................................................ 2-16 2.4 Design Procedures ............................................................................................................................... 2-18
    [Show full text]
  • Improving the Overall Heat Transfer Coefficient of an Air Preheater by Design, Fabrication and CFD Analysis
    International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences (NCDATES- 09th & 10th January 2015) RESEARCH ARTICLE OPEN ACCESS Improving the Overall heat transfer coefficient of an Air Preheater by Design, Fabrication and CFD Analysis M.Nageswara rao* *Assistant professor, Department of Mechanical Engineering, TKR Engineering College, Hyderabad. ABSTRACT An air preheater is a heat exchanger device designed to heat air before another process (for example, combustion in a boiler) with the primary objective of increasing the thermal efficiency of the process. The purpose of the air preheater is to recover the heat from the boiler flue gas which increases the thermal efficiency of the boiler by reducing the useful heat lost in the flue gas. This project mainly deals with design, modeling and fabrication and cfd analysis of a shell and tube air preheater. Over all heat transfer coefficient of the shell and tube heat exchanger is based on the results of effectiveness-ntu approach and lmtd approach. Drawing of various components will be presented with the help of various software’s like solid works, proe, etc., even different experimental results and trails will be analyzed and tabulated. Conclusion of the project will be the complete presentation of thermal and mechanical design, fabrication model, Overall heat transfer coefficient and cfd (computational fluid dynamics) analysis for the air preheater. Keywords: air preheater, cfd, fabrication . I. INTRODUCTION modeling and fabrication of shell and tube air An air pre-heater is a general term to describe preheater including thermal design. any device designed to heat air before another process (for example, combustion in a boiler) with III.
    [Show full text]
  • Steam Boilers & Industrial Furnaces
    Sustainable Power Generation MJ2405 Steam Boilers & Industrial Furnaces Miro Petrov Dept. of Energy Technology, KTH - Stockholm 1 Reading material on boilers Many books can be used – Any chapter on combustors, boilers, furnaces, steam generators, etc., might be good to look through! The main suggested sources: Advanced Energy Systems (Khartchenko&Kharchenko), CRC Press 2014 – section 3.7 and parts of chapters 6 & 7. Energy Conversion – free e-book by courtesy of the University of Tulsa, Kenneth C. Weston, 2000 – parts of chapters 4 and 9 http://www.personal.utulsa.edu/~kenneth-weston/ På svenska: Energiteknik - Del 2; Henrik Alvarez, Studentlitteratur 2006 – delar av kapitel 9 & kapitel 10. Dept. of Energy Technology, KTH - Stockholm 2 Horizontal fire-tube water heater Source: www.steamshowersauna.org Simplest boiler type. Used typically to produce hot water or saturated steam. The combustion zone (the flame) is inside a tube immersed in a water tank. Fired with liquid or gas fuels. Mostly at small- to mid-scale district heating or industrial applications. Not suitable for large sizes or for solid fuels. Dept. of Energy Technology, KTH - Stockholm 3 Purpose and parts of a large steam boiler • Should properly be called a “steam generator”! • Burns fuel to produce hot gases in the combustion zone (furnace) which then transfer heat to the water/steam side in the steam generation zone. Alternatively, some available waste hot gases from another process can be used, instead of burning a fuel. • The steam generation zone consists of economizer (water heater), evaporator (boiling section), and superheater/reheater situated along the flue gas path. • Remaining heat from the flue gas is transferred back to the fresh air supplied to the combustion zone, via an air preheater.
    [Show full text]
  • College of Engineering and Technology, Akola
    College of Engineering & Technology Akola COLLEGE OF ENGINEERING AND TECHNOLOGY, AKOLA DEPARTMENT OF MECHANICAL ENGINEERING NAME : ................................................................... SUBJECT : ENERGY CONVERSION LAB CLASS : SECOND YEAR MECHANICAL ENGG. ROLL NO : .............. NAME OF THE FACULTY: ROSHAN D. BHAGAT DESIGNATION: ASSIST. PROFESSOR BRANCH: MECHANICAL ENGINEERING SUBJECT: EC-1LAB SEMESTER: FOURTH ACADEMIC YEAR 2016-2017 1 ENERGY CONVERSION-1 LAB College of Engineering & Technology Akola DEPARTMENT OF MECHANICAL ENGINEERING CERTIFICATE This is to certify that Mr. / Miss............................................. has satisfactorily completed the course of experiments in ENERGY CONVERSION LAB as prescribed by the Sant Gadge Baba Amravati University in the laboratory of college for the academic year 2016-2017 Date: Signature of Teacher In charge of the Batch Head of department Name of the candidate Registration no Roll no. Date of practical examination 2 ENERGY CONVERSION-1 LAB College of Engineering & Technology Akola INDEX SR.NO NAME OF EXPERIMENT DATE SIGN 1 Study of water tube boiler babcock and Wilcox 2 Study of locomotive boiler 3 Study of high pressure boiler 4 Study of boiler accessories 5 Trial on boiler and heat balance sheet 6 Study of boiler mounting 7 Study and trial on steam turbine 8 Study of condenser 9 Study of condensate and air extraction pump 10 Study of steam power plant 3 ENERGY CONVERSION-1 LAB College of Engineering & Technology Akola Practical No 1 Aim: Study of water tube Babcock and Wilcox water tube boiler Apparatus: Babcock and Wilcox water tube boiler Theory: The water tube boiler used exclusively when pressure above 10 bars and capacity in excess of 7000 kg of steam per hour is required.
    [Show full text]
  • Improved Performance of a Industrial Packaged Boiler by Use
    ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Website: www.ijirset.com Vol. 6, Issue 1, January 2017 Improved Performance of a Industrial Packaged Boiler by Use of Economizer Nishadevi Jadeja1, Sanjaysinh Zala2 Assistant Professor, Dept of Mechanical Engineering, Govt. Engg. College, Bhavnagar, Gujrat , India1 Assistant Professor, Dept of Mechanical Engineering, Govt. Engg. College, Bhavnagar, Gujrat , India2 ABSTRACT: In the present scenario energy losses in the industrial boilers are majour problems so carryout energy audit at Anish chemicals Gidc chitra, at Bhavnagar. By energy Audit calculated boiler efficiency and major losses in plant and this work is completed . We can improved boiler efficiency by utilize economizer and give maximum cost benifit analysis. The value of boiler efficiency and diffrent losses are calculated at Anish chemicals .It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat loss due to radiation and convection from non insulated surfaces (4.8% to 6.3%), heat loss due to flue gas (6.3% to 6.4%), heat loss due to blow down (0.263 to 0.398%), heat loss due to incomplete combustion (1.87% to 2.21%), heat loss due to unburnt coal in bottom ash (1.74 % to 1.86)and heat loss due to moisture present in fuel (1.3% to 1.6%).Shell and tube type heat exchanger (economizer) was designed to recover heat loss due to flue gas by reducing flue gas discharge temperature.
    [Show full text]
  • Steam Handbook
    Products Solutions Services Steam Handbook An introduction to steam generation and distribution 1 Steam Handbook An introduction to steam generation and distribution Dr. Ian Roberts Phillip Stoor Michael Carr Dr. Rainer Höcker Oliver Seifert 2 Endress+Hauser – Steam Handbook Impressum Publisher Endress+Hauser Flowtec AG, CH-4153 Reinach/BL Editor in chief Thomas Stauss Editorial team Michael Carr, Dr. Rainer Höcker, Dr. Ian Roberts, Romeo Rocchetti, Oliver Seifert, Thomas Stauss, Phillip Stoor Illustrations Kodotec (Lörrach, Germany) Layout, set Beatrice Meyer Steam Handbook, 1st Edition 2017 © Copyright 2017 by: Endress+Hauser Flowtec AG, CH-4153 Reinach/BL All rights reserved. This work is copyright protected in its entirety. All use in breach of copyright laws without the express permission of the publisher is forbidden. Duplication, translation, microfilming, storage and processing in any form of electronic media is prohibited. 3 Contents 5 Foreword 37 How steam moves 5 What this document is about? (simple explanation) 5 Who this document is for? 5 How to use the document? 41 On the motion of steam (detailed explanation) 7 A short history of 55 Some hazards of steam boiler designs 55 Boiling liquid expanding vapor explosion (BLEVE) 11 Why use steam? 56 Column collapse water hammer 11 What is steam used for? 59 Sub-cooled condensate induced 12 Where is steam used? water hammer 61 Flash steam explosion 13 A generic steam system 61 Overpressure in the distribution system 17 Types of industrial 61 Overpressure (inside a pressure vessel)
    [Show full text]
  • Incineration Plants Full Range of Measurement Instrumentation and Solutions Heimdal/Trondheim "Energy from Waste" Know-How
    Incineration Plants Full range of measurement instrumentation and solutions Heimdal/Trondheim "Energy from waste" know-how Endress+Hauser is a leading supplier of measurement instrumentation, services and solutions for power plants worldwide. We design and manufacture a full range of industry-optimized instruments for every step of the process. Endress+Hauser also offers more than 50 years of application know-how to help customers increase their process efficiency, reduce their production down-time and streamline their Pfaffenau/Wien stockholding and logistics processes. As a Swiss, family-owned company, Endress+Hauser is dedicated to instrumentation plowing back all profits into the development of state-of-the-art process automation technologies. Since the beginning in 1953, Endress+Hauser has been a pioneer for cutting edge measurement and automation solutions. Endress+Hauser sales centers and representatives are located in 85 countries. Innovative measurement and automation systems are manufactured at 23 production centers in Switzerland, Germany, France, the United Kingdom, Italy, China, Japan, India, Russia and the USA. Paris Lausanne References Europe • ISSÈANE, Paris, - France • Sète - France • Le Mans - France • Perpignan - France • Heimdal/Trondheim - Norway • Pfaffenau/Wien Austria • Centré Tridel Lausanne – Switzerland • KVA Thun – Switzerland • KVA Trimmis – Switzerland • KVA Niederurnen – Switzerland • Allington – England • Lakeside – England • Xiamen - Japan 2 Stassfurt Endress+Hauser is powering its way to the top, providing solutions for waste-to-energy, fossil fuel (coal, gas and oil), nuclear and hydro power plants. The portion of incinerated waste differs considerably worldwide and is generally higher in industrialized countries than in developing countries. In Germany, about 50 percent of domestic waste is subjected Zorbau* to thermal treatment and while this figure is increasing it already amounts to 100 percent in Switzerland.
    [Show full text]