Steam Boilers & Industrial Furnaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use Feedwater Economizers for Waste Heat Recovery, Energy Tips
ADVANCED MANUFACTURING PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery Suggested Actions ■■ Determine the stack temperature A feedwater economizer reduces steam boiler fuel requirements by transferring after the boiler has been tuned heat from the flue gas to incoming feedwater. Boiler flue gases are often to manufacturer’s specifications. rejected to the stack at temperatures more than 100°F to 150°F higher than The boiler should be operating the temperature of the generated steam. Generally, boiler efficiency can at close-to-optimum excess be increased by 1% for every 40°F reduction in flue gas temperature. By air levels with all heat transfer recovering waste heat, an economizer can often reduce fuel requirements by 5% surfaces clean. to 10% and pay for itself in less than 2 years. The table provides examples of ■■ Determine the minimum the potential for heat recovery. temperature to which stack gases Recoverable Heat from Boiler Flue Gases can be cooled subject to criteria such as dew point, cold-end Recoverable Heat, MMBtu/hr corrosion, and economic heat Initial Stack Gas transfer surface. (See Exhaust Temperature, °F Boiler Thermal Output, MMBtu/hr Gas Temperature Limits.) 25 50 100 200 ■■ Study the cost-effectiveness of installing a feedwater economizer 400 1.3 2.6 5.3 10.6 or air preheater in your boiler. 500 2.3 4.6 9.2 18.4 600 3.3 6.5 13.0 26.1 Based on natural gas fuel, 15% excess air, and a final stack temperature of 250˚F. Example An 80% efficient boiler generates 45,000 pounds per hour (lb/hr) of 150-pounds-per-square-inch-gauge (psig) steam by burning natural gas. -
Performance Analysis of Air Preheater in 210Mw Thermal Power Station
Manivel .J, Manimaran .L, Thiyagarajan .M, Satheeshkumar .P; International Journal of Advance Research, Ideas and Innovations in Technology. ISSN: 2454-132X Impact factor: 4.295 (Volume3, Issue2) Performance Analysis of Air Preheater in 210mw Thermal Power Station J. Manivel1 L. Manimaran2 M. Thiyagarajan3 Department of Mechanical Engineering, Department of Mechanical Engineering, Department of Mechanical Engineering, SNS College of Engineering, SNS College of Engineering, SNS College of Engineering, Coimbatore, TN, India Coimbatore, TN, India Coimbatore, TN, India P. Satheeshkumar4 Thiruppathi .R5 Department of Mechanical Engineering, SNS College of Department of Mechanical Engineering, SNS College of Engineering, Coimbatore, TN, India Engineering, Coimbatore, TN, India s Abstract: The efficiency of boiler in thermal power station is greatly depending on the utilization of waste heat in the flue gas by air pre heater and economizer. The increasing in efficiency of boiler can be achieved by increasing the performance of air pre heater and economizer. Enhancing heat transfer rate by changing profile of air pre heater will lead to increasing in performance of the air pre heater and economizer. The changing profile and increasing heat transfer area will increase the heat transfer rate. In 210MW Mettur thermal power station, notched flat profile is used as heat transfer area in air pre heater segment. In order to improve heat transfer rate, notched flat profile are replaced by double undulated profile and single seal are replaced by double seal. Hence heat loss in the air pre heater is minimized. The performance of economizer is enhanced by increasing the diameter of the coils. Hence the economizer and air pre heater absorbs additional heat from exhaust flue gas. -
'Fan-Assisted Combustion' AUD1A060A9361A
AUD1A060-SPEC-2A TAG: _________________________________ Specification Upflow / Horizontal Gas Furnace"Fan-Assisted 5/8" Combustion" 14-1/2" 13-1/4" AUD1A060A9361A 5/8" 28-3/8" 19-5/8" 5/8" 1/2" 4" DIAMETER FLUE CONNECT 7/8" DIA. HOLES ELECTRICAL 9-5/8" CONNECTION 4-1/16" 1/2" 3/4" 2-1/16" 7/8" DIA. K.O. 3-15/16" ELECTRICAL CONNECTION 8-1/4" (ALTERNATE) 13" 40" 3-3/4" 1-1/2" DIA. 3/4" K.O. GAS CONNECTION 2-1/16" (ALTERNATE) 28-1/4" 28-1/4" 3/4" 22-1/2" 23-1/2" 5-5/16" 3-13/16" 1-1/2" DIA. HOLE 3/8" GAS CONNECTION 2-1/8" FURNACE AIRFLOW (CFM) VS. EXTERNAL STATIC PRESSURE (IN. W.C.) MODEL SPEED TAP 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 AUD1A060A9361A 4 - HIGH - Black 1426 1389 1345 1298 1236 1171 1099 1020 934 3 - MED.-HIGH - Blue 1243 1225 1197 1160 1113 1057 991 916 831 2 - MED.-LOW - Yellow 1042 1039 1027 1005 973 931 879 817 745 1 - LOW - Red 900 903 895 877 848 809 760 700 629 CFM VS. TEMPERATURE RISE MODEL CFM (CUBIC FEET PER MINUTE) 800 900 1000 1100 1200 1300 1400 AUD1A060A9361A 56 49 44 40 37 34 32 © 2009 American Standard Heating & Air Conditioning General Data 1 TYPE Upflow / Horizontal VENT COLLAR — Size (in.) 4 Round RATINGS 2 HEAT EXCHANGER Input BTUH 60,000 Type-Fired Alum. Steel Capacity BTUH (ICS) 3 47,000 -Unfired AFUE 80.0 Gauge (Fired) 20 Temp. -
Indoor Air Quality (IAQ): Combustion By-Products
Number 65c June 2018 Indoor Air Quality: Combustion By-products What are combustion by-products? monoxide exposure can cause loss of Combustion (burning) by-products are gases consciousness and death. and small particles. They are created by incompletely burned fuels such as oil, gas, Nitrogen dioxide (NO2) can irritate your kerosene, wood, coal and propane. eyes, nose, throat and lungs. You may have shortness of breath. If you have a respiratory The type and amount of combustion by- illness, you may be at higher risk of product produced depends on the type of fuel experiencing health effects from nitrogen and the combustion appliance. How well the dioxide exposure. appliance is designed, built, installed and maintained affects the by-products it creates. Particulate matter (PM) forms when Some appliances receive certification materials burn. Tiny airborne particles can depending on how clean burning they are. The irritate your eyes, nose and throat. They can Canadian Standards Association (CSA) and also lodge in the lungs, causing irritation or the Environmental Protection Agency (EPA) damage to lung tissue. Inflammation due to certify wood stoves and other appliances. particulate matter exposure may cause heart problems. Some combustion particles may Examples of combustion by-products include: contain cancer-causing substances. particulate matter, carbon monoxide, nitrogen dioxide, carbon dioxide, sulphur dioxide, Carbon dioxide (CO2) occurs naturally in the water vapor and hydrocarbons. air. Human health effects such as headaches, dizziness and fatigue can occur at high levels Where do combustion by-products come but rarely occur in homes. Carbon dioxide from? levels are sometimes measured to find out if enough fresh air gets into a room or building. -
The Affordable Heat-Circulating Fireplace Offering Style, Value and Performance. After a Hard Day in a Cold World…
F I R E P L A C E S Y S T E M S The affordable heat-circulating fireplace offering style, value and performance. After a Hard Day in a Cold World… The NEW-AIRE FIREPLACE SYSTEM utilizes the basic principles of thermodynamics designed into any new high-efficient forced air furnace (radiant, conductive and convective heat transfer). By forcing air movement through a series of baffles in a specifically designed heat exchanger surrounding a steel firebox, ratings in excess of 200,000 BTU can be achieved in a full-fired condition. With 1050 cubic feet of air per minute at central HVAC static pressures, the NEW-AIRE fireplace easily matches the heat output of any high-efficiency furnace on the market today. Your home is the heart of your family’s life. A warm hearth is the gathering place that defines the spirit of the home. The NEW-AIRE fireplace, clad in brass and glass, provides both the traditional and functional elements needed in today’s life. Unlike stoves and inserts, the NEW-AIRE can be independently ducted to provide whole-house heating beyond the walls of the room in which it is installed. Certified to the International Mechanical Code, when ducted to induce heat into the central heating system, the NEW-AIRE SYSTEM efficiently provides the required heat for 4000 plus square foot homes. The NEW-AI Airtight /Airwash Door Control: heat loss, wood consumption, and smoke in the winter — air infiltration and ash smell in the summer. Makes any fireplace more efficient by controlling the “burn rate”. -
Designing and Maintaining Steam Coil Air Preheaters for Reliability And
PLANT AUXILIARY SYSTEMS Designing and maintaining steam coil air preheaters for reliability and effectiveness If engineered well and drained properly, a simple finned-tube heat exchanger can help maximize a fossil-fueled power plant’s combustion efficiency, capacity, and air pollution reduction. Use the guidelines in this article ei- ther to return a disabled steam coil air preheater to service or to improve the performance of a unit that may have been wasting steam and money for years. By James R. Smith, Armstrong Heat Transfer Group team coil air preheaters (SCAPs) are sitions and the duct connection to the inlet there (Figure 4). Clogging and reduced per- found in most fossil-fueled utility and (cold end) of an RRAH. As opposed to being formance will be the undesirable outcome. Slarge industrial power plants in North bolted in place by duct flanges (Figure 2), Often (but unintentionally), the SCAP’s coils America. Their primary function is to heat units used in such a configuration are usu- serve as a convenient platform for mainte- combustion air before it enters a rotary re- ally drawer-mounted, for easier access and nance workers tasked with cleaning and in- generative air heater (POWER, April 2006, p. removal (Figure 3). specting the RRAH. 72) or a traditional tubular air heater. Wheth- Placing a SCAP ahead of the cold end Another undesirable consequence of er a rotary regenerative air heater (RRAH) (inlet side) of a RRAH, however, can invite placing a poorly constructed, specified, or or a traditional tubular heater is downstream, maintenance problems and shorten unit life. -
Evaluation of Dry Fly-Ash Particles Causing Difficult Deposits for Acoustic Soot Blowing of Boilers
UPTEC Q16 025 Examensarbete 30 hp December 2016 Evaluation of dry fly-ash particles causing difficult deposits for acoustic soot blowing of boilers Arvid Bo Cedervall Abstract Evaluation of dry fly-ash particles causing difficult deposits for acoustic soot blowing of boilers Arvid Bo Cedervall Teknisk- naturvetenskaplig fakultet UTH-enheten This thesis compares ash collected from different boilers cleaned using infrasound cleaning. The samples were evaluated from their physical properties, in an attempt to Besöksadress: find connections between the difficulty to remove ash and its physical appearance. To Ångströmlaboratoriet Lägerhyddsvägen 1 get a deeper understanding of the mechanisms behind adhesion and fouling, and Hus 4, Plan 0 possibly explain results from the study of the ash samples, a literature review was carried out. The ash was also evaluated to see if any connections could be drawn Postadress: between the physical properties of the ash and its fouling capabilities. A strong Box 536 751 21 Uppsala connection was found between ash density and its fouling capabilities. It was found that no dry ash with a density higher than 0.4 g/ml were difficult to remove with Telefon: infrasound cleaning, and no ash with lower density was easy to remove. The ash 018 – 471 30 03 density was calculated from a measurement of the weight of a certain volume of ash Telefax: on a scale. Optical microscopy was used to study the ash samples, and gave an 018 – 471 30 00 estimation of particle size, shape, and porosity. However, no clear connection could be observed with this method between the different samples and which were difficult Hemsida: to remove. -
American Standard Humidifiers – Our Dealers Will Put You in Designed to Complete Your Matched System and Your Comfort
Achieve a better balance and a better level of comfort. Whole-Home Humidifiers Say good-bye to dry. Bone dry Arid outside Comfort for your body and mind. How an American Standard humidifier outside During the winter or in arid climates, the air in your home can leave benefits your family: you feeling parched. You may experience dry skin, brittle hair, • Provides potential energy savings during heating by cracked lips, itchy eyes and irritated nasal passages. Your furniture, making the air feel warmer, so you’re more comfortable setting your thermostat lower. woodwork and musical instruments may also suffer as the dry air • Reduces static electricity so you won’t have any leaches their essential moisture. By balancing the moisture level in shocking experiences. your home, an American Standard humidifier improves your comfort • Prevents skin, hair and nasal passages from drying out. and protects your belongings. And when the mercury dips, a • Protects your furniture, woodwork, artwork, books, Inside it’s just the way you like it. Thanks to American Standard Heating & Air Conditioning. humidifier can also help you save on your heating costs. With the plants and other valuables. right amount of moisture in the air, you’ll feel warmer and be able to keep your thermostat at a lower, more efficient setting. • Lessens shrinkage of woodwork around doors and windows. American Standard Humidifiers – Our dealers will put you in Designed to complete your matched system and your comfort. More than 100 years your comfort zone. of feeling right at home. When it comes to your home comfort system, you may find yourself thinking peace of mind. -
How to Select the Right Honeywell Thermostat for Your Comfort Zone
Step 1: Identify your heating/cooling system Thermostats IMPORTANT: Thermostats are designed to work with specific What To Look For heating/cooling systems, so it’s essential that you know your system Be Confident With Honeywell type to avoid purchasing the wrong style. All thermostats share one common feature — a way to set the temperature. After that, every Honeywell has been inventing and perfecting thermostats Central Heat or Central Heat & Air — The most common thermostat is different in terms of accuracy, reliability, number of features, display size and since 1885 and is the number one choice of homeowners system. Can be 24V gas or oil, hot water or electric. and contractors. You can count on Honeywell products for more. Here are a few features you should consider when choosing your thermostat. superior design, engineering and efficiency. Heat Pump — Heating and air conditioning combined into one unit. Can be single- or multi-stage. Years Fireplace/Floor/Wall Furnace — Millivolt or 24V of heating systems. Superior Comfort Electric Baseboard — Convectors, fan-forced heaters, Auto Change From Heat To Cool. electric baseboards and radiant ceilings. Menu-Driven Programming. Some Automatically determines if your home 4 Programmable Periods Per Day. Here To Help programmable thermostats can be needs heating or cooling to provide maxi- Honeywell programmable thermo- difficult to program, but menu-driven mum comfort. stats allow settings for wake, leave, If you have any questions about Honeywell thermostats, Step 2: Choose your thermostat type programming guides you through the return and sleep to provide you call our toll-free consumer hotline at 1-800-468-1502 or process much like using an ATM. -
Improvement in Efficiency of Air Preheater in Boiler Tps- 1 Expansion
IJRDO - Journal of Mechanical and Civil Engineering ISSN-2456-1479 IMPROVEMENT IN EFFICIENCY OF AIR PREHEATER IN BOILER TPS- 1 EXPANSION S.Sudhakar* C.M.Raguraman Department of Mechanical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar - 608002, India. e-mail: [email protected]. Abstract-- An air pre-heater is a general term to describe any The organization of this paper is as follows: device designed to heat air before another process (for Section I gives an Introduction and an outlay of the scope example, combustion in a boiler) with the primary objective of of the work. Proposed methodology is elaborated in increasing the thermal efficiency of the process. They may be Section II. Air and flue gas path is given in Section III, used alone or to replace a recuperative heat system or to and are described in Section V followed by the replace a steam coil. In particular, this project describes the combustion air pre-heaters used in large boilers found in conclusion in Section VI. thermal power stations producing electric power from e.g. fossil fuels, biomasses or waste. The purpose of the air pre- SCOPE THE WORK heater is to recover the heat from the boiler flue gas which increases the thermal efficiency of the boiler by reducing the After studying the journal papers mentioned above, it is useful heat loss of the flue gas in an regenerative pre-heater. understood that there are some leakages development in This project analysis how operation parameters of an the RAPH and maintenances of RAPH is to be considered regenerative air preheater can be optimized in order to for the improvement efficiency of the boiler shell and increase its efficiency and consequently the overall efficiency tube air preheater. -
Furnace Fan Preliminary Analysis TSD Chapter 7. Energy Use Analysis
CHAPTER 7. ENERGY USE ANALYSIS TABLE OF CONTENTS 7.1 INTRODUCTION ........................................................................................................... 7-1 7.2 GENERAL APPROACH TO THE ENERGY USE ANALYSIS ................................... 7-1 7.3 HOUSEHOLD SAMPLE ................................................................................................ 7-2 7.4 FURNACE FAN POWER CONSUMPTION ................................................................. 7-4 7.4.1 System Curves ................................................................................................................. 7-4 7.4.2 Furnace Fan Curves ......................................................................................................... 7-6 7.4.3 Fan Power ........................................................................................................................ 7-7 7.4.4 Determination of Fan Performance by Product Class and Efficiency Level ................... 7-9 7.5 OPERATING HOURS .................................................................................................. 7-17 7.5.1 Heating Mode................................................................................................................. 7-17 7.5.2 Cooling Mode ................................................................................................................ 7-23 7.5.3 Constant Circulation Mode ............................................................................................ 7-28 7.6 FURNACE FAN STANDBY ENERGY -
Incinerators
EPA/452/B-02-001 Section 3 VOC Controls EPA/452/B-02-001 Section 3.2 VOC Destruction Controls EPA/452/B-02-001 Chapter 2 Incinerators William M. Vatavuk Innovative Strategies and Economics Group, OAQPS U.S. Environmental Protection Agency Research Triangle Park, NC 27711 Donald R. van der Vaart & James J. Spivey Research Triangle Institute Research Triangle Park, NC 27709 September 2000 Contents 2.1 Introduction ........................................................................................................................................... 2.-3 2.2 Process Description .............................................................................................................................................. 2-3 2.2.1 Thermal Incinerators .................................................................................................................. 2-6 2.2.2 Catalytic Incinerators ............................................................................................................... 2-10 2.2.3 Other Considerations: Packaged versus Field-Erected Units, Auxiliary Equipment ............... 2-13 2.2.4 Technology Comparison .......................................................................................................... 2-15 2.3 General Treatment of Material and Energy Balances ............................................................................ 2-16 2.4 Design Procedures ............................................................................................................................... 2-18