minerals Article Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement Evgeny V. Vetrov 1,*, Johan De Grave 2, Natalia I. Vetrova 1, Fedor I. Zhimulev 1 , Simon Nachtergaele 2 , Gerben Van Ranst 3 and Polina I. Mikhailova 4 1 Sobolev Institute of Geology and Mineralogy SB RAS, 630082 Novosibirsk, Russia;
[email protected] (N.I.V.);
[email protected] (F.I.Z.) 2 Department of Geology, Mineralogy and Petrology Research Unit, Ghent University, 9000 Ghent, Belgium;
[email protected] (J.D.G.);
[email protected] (S.N.) 3 Environment Unit, Antea Group Belgium, 2600 Antwerpen, Belgium;
[email protected] 4 Siberian Research Institute of Geology, Geophysics and Mineral Resources, 630091 Novosibirsk, Russia;
[email protected] * Correspondence:
[email protected] Abstract: The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental ques- tions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras Citation: Vetrov, E.V.; De Grave, J.; requires insights into the cooling history of the basement rocks as determined by low-temperature Vetrova, N.I.; Zhimulev, F.I.; thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the Nachtergaele, S.; Van Ranst, G.; Mikhailova, P.I. Tectonic Evolution of exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute the SE West Siberian Basin (Russia): timeframe.