Gardening with New York City Native Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nitrogen Fixation in Roots of Ceanothus
University of Richmond UR Scholarship Repository Biology Faculty Publications Biology Summer 2019 Nitrogen Fixation in Roots of Ceanothus W. John Hayden University of Richmond, [email protected] Follow this and additional works at: https://scholarship.richmond.edu/biology-faculty-publications Part of the Botany Commons, and the Plant Biology Commons Recommended Citation Hayden, John W. "Nitrogen Fixation in Roots of Ceanothus." Sempervirens: The Quarterly of the Virginia Native Plant Society (Summer 2019): 6-7. This Article is brought to you for free and open access by the Biology at UR Scholarship Repository. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. 6 Sempervirens, Summer 2019 Nitrogen Fixation in Roots of Ceanothus Article by W. John Hayden, Botany Chair oots are usually out of sight and, nitrogen-containing compounds. Rtherefore, out of mind. But as But there is a paradox about any good gardener will tell you, it is nitrogen and life. You, me, the of utmost importance to understand chickens in my backyard, and the those unique plant organs, even if their Pawpaw tree that shades them are essential functions occur hidden from all constantly bathed in atmospheric cursory observation. The red roots of nitrogen gas, yet that form of nitrogen the 2019 VNPS Wildflower of the Year, is completely unavailable to our cells, Ceanothus americanus, are particularly or the cells of my chickens, or my important because they host symbiotic Pawpaw. Every breath I take brings a bacteria that perform the essential quantity of fresh air into my lungs, 78 function of nitrogen fixation. -
Native Plants of East Central Illinois and Their Preferred Locations”
OCTOBER 2007 Native Plants at the University of Illinois at Urbana-Champaign Campus: A Sourcebook for Landscape Architects and Contractors James Wescoat and Florrie Wescoat with Yung-Ching Lin Champaign, IL October 2007 Based on “Native Plants of East Central Illinois and their Preferred Locations” An Inventory Prepared by Dr. John Taft, Illinois Natural History Survey, for the UIUC Sustainable Campus Landscape Subcommittee - 1- 1. Native Plants and Plantings on the UIUC Campus This sourcebook was compiled for landscape architects working on projects at the University of Illinois at Urbana-Champaign campus and the greater headwaters area of east central Illinois.1 It is written as a document that can be distributed to persons who may be unfamiliar with the local flora and vegetation, but its detailed species lists and hotlinks should be useful for seasoned Illinois campus designers as well. Landscape architects increasingly seek to incorporate native plants and plantings in campus designs, along with plantings that include adapted and acclimatized species from other regions. The term “native plants” raises a host of fascinating scientific, aesthetic, and practical questions. What plants are native to East Central Illinois? What habitats do they occupy? What communities do they form? What are their ecological relationships, aesthetic characteristics, and practical limitations? As university campuses begin to incorporate increasing numbers of native species and areas of native planting, these questions will become increasingly important. We offer preliminary answers to these questions, and a suite of electronic linkages to databases that provide a wealth of information for addressing more detailed issues. We begin with a brief introduction to the importance of native plants in the campus environment, and the challenges of using them effectively, followed by a description of the database, online resources, and references included below. -
An IPM Pocket Guide for Weed Identification in Nurseries and Landscapes Produced by Michigan State University Extension
Back to table of contents Back to index 2020 PDF An IPM Pocket Guide for Weed Identification in Nurseries and Landscapes Produced by Michigan State University Extension Contents Index of weeds (clickable) ........................ 2-8 Weed identification ............................... 9-183 Using this scouting guide..........................184 Weed classification ...................................185 Grass and broadleaf characteristics . 186-189 Glossary ........................................... 190-192 Credits and acknowledgments ......... 193-194 Suggested reading ...................................195 1 Back to table of contents Back to index Index By common name Annual bluegrass ...........................................32-33 Annual sowthistle................................................73 Asiatic (common) dayflower ..........................18-19 Barnyardgrass ....................................................27 Bindweed, field ..........................................101-103 Bindweed, hedge .......................................102-103 Birdseye pearlwort ..............................................98 Birdsfoot trefoil...........................................109-110 Bittercress, hairy ............................................83-85 Bittercress, smallflowered...................................85 Black medic ............................................... 112-113 Blackseed plantain ...........................................150 Bluegrass, annual ..........................................32-33 Brambles ...................................................164-165 -
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
New Jersey Tea, Ceanothus Americanus, 2019 Virginia Wildlflower of the Year W
University of Richmond UR Scholarship Repository Biology Faculty Publications Biology 2019 New Jersey Tea, Ceanothus Americanus, 2019 Virginia Wildlflower of the Year W. John Hayden University of Richmond, [email protected] Follow this and additional works at: https://scholarship.richmond.edu/biology-faculty-publications Part of the Plant Sciences Commons Recommended Citation W. John Hayden. New Jersey Tea, Ceanothus americanus, 2019 Virginia Wildflower of the Year. Virginia Native Plant Society, 2019. This Brochure is brought to you for free and open access by the Biology at UR Scholarship Repository. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Ceanothus americanus ew Jersey Tea is a low shrub, generally less tips to the periphery of the flower. The five stamens Nthan 1 m tall and often profusely branched. are attached in radial alignment with the petals; fila- Stems are finely hairy, but may become smooth with ments are oriented vertically, positioning the anthers age. Vegetative stems are perennial, but flowering directly above the central portion of the flower. Ova- stems persist for just a single year. Leaves are mostly ries are three-lobed, superior, and positioned atop 5—10 cm long; leaf shape varies from narrowly to thick glandular disks; the short styles are topped with widely ovate, acuminate to acute at the apex, and cor- three-branched stigmas. Fruits possess a finely rugose date to rounded at the base; leaf margins are finely surface layer that is shed prior to ballistic dehiscence serrate; both leaf surfaces may be finely hairy, espe- of the inner layers; in this fashion the three seeds cially on the veins; vein pattern is pinnate with produced by each fruit are propelled a short distance In the Wild a pair of prominent secondary from the parent plant. -
Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts
Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts New England Wildflower Society 180 Hemenway Road Framingham, MA 01701 508-877-7630 www.newfs.org Report by Joy VanDervort-Sneed, Atkinson Conservation Fellow and Ailene Kane, Plant Conservation Volunteer Coordinator Prepared for the Arboretum Park Conservancy Funded by the Arnold Arboretum Committee 2 Conducted 2005 TABLE OF CONTENTS INTRODUCTION........................................................................................................................4 METHODS....................................................................................................................................6 RESULTS .......................................................................................................................................8 Plant Species ........................................................................................................................8 Natural Communities...........................................................................................................9 DISCUSSION .............................................................................................................................15 Recommendations for Management ..................................................................................15 Recommendations for Education and Interpretation .........................................................17 Acknowledgments..............................................................................................................19 -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND ET MEDITERRANEENNE MEDITERRANEAN POUR LA PROTECTION DES PLANTES PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2017-01 General 2017/001 EPPO Standards on efficacy evaluation of plant protection products: update of the web-based database Pests 2017/002 Eradication of Anoplophora glabripennis in Winterthur, Switzerland 2017/003 Eradication of Anoplophora glabripennis in St Georgen bei Obernberg, Austria 2017/004 First report of Anoplophora glabripennis in Montenegro 2017/005 Anoplophora glabripennis found in Ain department, France 2017/006 New outbreak of Anoplophora glabripennis in Bayern, Germany 2017/007 Updated situation of Anoplophora chinensis in Switzerland 2017/008 New outbreak of Anoplophora chinensis in Lombardia, Italy 2017/009 First report of Thrips setosus in the United Kingdom 2017/010 First report of Thrips setosus in France 2017/011 First report of Thrips setosus in Croatia 2017/012 First report of Thrips setosus in Germany 2017/013 Diabrotica virgifera virgifera no longer occurs in Belgium Diseases 2017/014 Detection and eradication of Curtobacterium flaccumfaciens pv. poinsettiae in Germany 2017/015 Curtobacterium flaccumfaciens pv. poinsettiae: addition to the EPPO Alert List 2017/016 First report of Curtobacterium flaccumfaciens pv. oortii on Petunia in Poland and subsequent eradication 2017/017 Updated situation of Ralstonia solanacearum in the Netherlands 2017/018 Ralstonia solanacearum detected in Rosa in Poland 2017/019 Ralstonia solanacearum detected again -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Chromosome Numbers in Certain Species of Helianthus Florence Geisler Butler University
Butler University Botanical Studies Volume 2 Butler University Botanical Studies Article 7 Chromosome Numbers in Certain Species of Helianthus Florence Geisler Butler University Follow this and additional works at: http://digitalcommons.butler.edu/botanical The utleB r University Botanical Studies journal was published by the Botany Department of Butler University, Indianapolis, Indiana, from 1929 to 1964. The cs ientific ourj nal featured original papers primarily on plant ecology, taxonomy, and microbiology. Recommended Citation Geisler, Florence (1931) "Chromosome Numbers in Certain Species of Helianthus," Butler University Botanical Studies: Vol. 2, Article 7. Available at: http://digitalcommons.butler.edu/botanical/vol2/iss1/7 This Article is brought to you for free and open access by Digital Commons @ Butler University. It has been accepted for inclusion in Butler University Botanical Studies by an authorized administrator of Digital Commons @ Butler University. For more information, please contact [email protected]. CHROMOSOME NUMBERS IN CERTAIN SPECIES OF HELlANTHUS By FLORENCE GEISLER INTRODUCTION some Bot. The genus Helianthus is a comparatively large one, contaInIng, ac pI. ct cording to Watson (13), 108 authentic and several doubtful species. These are arranged and classified by the taxonomist according to mani Bot. festations that are readily visible, but, if the chromosome number and the behavior during meiosis were known in each case, a better under Plant standing could be gained of the interrelation of the species and greater r grib. accuracy might be possible in deciding whether a doubtful plant were a variety, a true species or a hybrid. '/iflorn Up to now, the chromosomes have been counted in two species. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland
Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland Davies, K. W., Boyd, C. S., Johnson, D. D., Nafus, A. M., & Madsen, M. D. (2015). Success of seeding native compared with introduced perennial vegetation for revegetating medusahead-invaded sagebrush rangeland. Rangeland Ecology & Management, 68(3), 224-230. doi:10.1016/j.rama.2015.03.004 0.1016/j.rama.2015.03.004 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Rangeland Ecology & Management 68 (2015) 224–230 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland☆,☆☆ K.W. Davies a,⁎,C.S.Boyda,D.D.Johnsonb,A.M.Nafusc,M.D.Madsend a Rangeland Scientists, USDA—Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA 1 b Associate Professor, Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA c Research Associate, Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA d Ecologist, USDA—Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA 1 article info abstract Article history: Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle Received 16 October 2014 &Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exot- Accepted 2 March 2015 ic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity. Reveg- etation of medusahead-invaded sagebrush plant communities is necessary to restore ecosystem services. -
Introduction to Bacteriology and Bacterial Structure/Function
INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.