Food Research International 121 (2019) 723–729

Total Page:16

File Type:pdf, Size:1020Kb

Food Research International 121 (2019) 723–729 Food Research International 121 (2019) 723–729 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Survey of mislabelling across finfish supply chain reveals mislabelling both T outside and within Canada ⁎ Hanan R. Shehataa,b, Danielle Bourquea,b, Dirk Steinkeb, Shu Chenc, Robert Hannera,b, a Department of Integrative Biology, University of Guelph, Guelph, ON, Canada b Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada c Laboratory Services Division, University of Guelph, Guelph, ON, Canada ARTICLE INFO ABSTRACT Keywords: Seafood has become one of the most heavily traded food commodities in the era of globalization. International Seafood seafood supply chains are complex and contend with many difficulties in bringing an enormous variety of Substitution products to market. A major challenge involves accurately labelling products such that they comply with a BOLD diverse set of regulatory frameworks, ranging from country-of-origin through to the final point of consumer sale. DNA barcoding Thanks to DNA barcoding, seafood mislabelling is now recognized as a global problem, with potentially negative Importer impacts on human health, economy and the environment. Mislabelling can result from species misidentification, Retailer Regulatory framework use of inappropriate common names, incomplete and/or out-dated regulatory frameworks, or through market substitution. While prior studies have focused primarily on retail and food service establishments, this study used barcoding to assess rates of finfish mislabelling at multiple points in the supply chain within Ontario, Canada.A total of 203 specimens from 12 key targeted species were collected from varied importers, registered processing plants and retailers in Southern Ontario and identified using DNA barcoding. Species identity of samples was used to assess conformity of labelling against the Canadian Food Inspection Agency's (CFIA) Fish List, which revealed an overall mislabelling rate of 32.3% among targeted species. The mislabelling rate was significantly different between samples collected from importers and retailers. Among the mislabelled samples wereseven samples that originated from US and were properly labelled according to US Food and Drug Administration (FDA) Seafood List. This study evaluated the integrity of chain of custody documents and identified dis- crepancies in 43 samples (21.4%). Implementing seafood traceability throughout the supply chain and har- monizing labelling regulations between countries can help to ensure industry compliance in a globalized market, while sampling at multiple points in the supply chain can help to reveal causes. 1. Introduction unlawful practices such as illegal, unreported and unregulated fishing (IUU) and poor regulations on aquaculture (Spink & Moyer, 2011; Seafood mislabelling is a serious problem that demonstrates the Pardo et al., 2016; Jacquet & Pauly, 2008). vital role and need for authenticity and traceability measures to control Complex supply chains are a major contributing factor to seafood food fraud and its associated health risks (Spink & Moyer, 2011). Pre- mislabelling, as seafood is the most traded food commodity worldwide vious studies conducted over the past five years in Canada and world- (Pardo et al., 2016; Koonse, 2016). The seafood supply chains consist of wide reported mislabelling rates ranging from 5% to 100%, averaging several steps starting from fishing (fisheries) or production (aqua- at 30% (Naaum et al., 2016; Pardo et al., 2016). The most common culture), transport to first buyer or primary processor, processing/ form of mislabelling is species substitution; however, other forms of packaging, transport to wholesalers, distribution to retailers and res- mislabelling exist such as substituting a wild caught fish with a farmed taurants and finally to consumers. As a consequence, pinpointing where one, which may contain varying levels of chemicals and antibiotics mislabelling occurs becomes more challenging (Leal et al., 2015; (Cabello et al., 2013; (FDA). Eating Fish: What Pregnant Women and Muñoz-Colmenero et al., 2016). It may be intentional, and economic- Parents Should Know, 2017). Seafood mislabelling poses a threat to the ally motivated, at any point in the supply chain, but may also be un- economy, to consumer health, and to sustainable management of intentional; for example, caught fish may be misidentified during overexploited fish species. Additionally, seafood mislabelling facilitates fishing due to similarity in physical/morphological characteristics ⁎ Corresponding author at: Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada. E-mail address: [email protected] (R. Hanner). https://doi.org/10.1016/j.foodres.2018.12.047 Received 8 February 2018; Received in revised form 4 December 2018; Accepted 22 December 2018 Available online 24 December 2018 0963-9969/ © 2018 Published by Elsevier Ltd. H.R. Shehata et al. Food Research International 121 (2019) 723–729 (Muñoz-Colmenero et al., 2016). Errors may also happen during dis- Mexico (10), New Zealand (7), Norway (2), Pakistan (2), Peru (5), tribution especially in instances when a large volume of fish needs to be Philippines (2), Portugal (7), Russia (1), Senegal (1), Sri Lanka (3), processed in a short time period (Muñoz-Colmenero et al., 2016). Once Trinidad (5), US (34), Vietnam (6) and UK (6). The declared storage processed, products can be difficult to identify and mix-ups can occur. conditions of collected samples were frozen for 55 samples, refrigerated However, patterns of market substitution suggest economically moti- for 119 samples, refrigerated but previously frozen for 28 samples and vated adulteration is not uncommon. one live sample. Twenty-one samples were Marine Stewardship Council Modern molecular methods such as DNA barcoding provide useful (MSC) certified, one sample was Aquaculture Stewardship Council tools for seafood authentication. These methods are particularly valu- (ASC) certified, and five samples were Ocean Wise recommended able for processed specimens where morphological features are lost (Table A1). To comply with the minimum information required for (Pardo et al., 2016; Muñoz-Colmenero et al., 2016; Chin et al., 2016). market surveys using DNA barcoding, metadata included inspector's DNA barcoding depends on sequencing of an ~650 bp fragment of the name, date/time of collection, declared common name, brand name, mitochondrial cytochrome oxidase I gene (COX-I) which has been weight, country of origin, packer/manufacturer, storage conditions, widely used for species identification (Chin et al., 2016; Hanner et al., registered establishment name and address, city, type of registered es- 2011; Ward et al., 2009). The retrieved sequences are queried against tablishment (importer, retailer, registered processing plant), detailed reference databases such as the Barcode of Life Data Systems (BOLD) or location, and photographs for the product, master carton and labels (if the National Center for Biotechnology Information (NCBI) GenBank to applicable) (Naaum et al., 2015). infer a species identification of an unknown based on its barcode se- quence. 2.3. DNA extraction, PCR amplification of COX-1 gene, sequencing and Most previous surveys for seafood mislabelling focused on retail sequence analysis outlets and food service establishments and are unable to assess where in the supply chain problems arise. Through collaboration with the Muscle tissues of finfish samples were subsampled for DNA extrac- Canadian Food Inspection Agency (CFIA), finfish samples from com- tion (~10 mg of tissue). Subsampling tools were cleaned using monly mislabelled products were collected from different points in the ELIMINase® (04-355-32, Fisher Scientific) before handling the first supply chain including importers, registered processing plants and re- sample, between samples and after handling the last sample by dipping tailers. Furthermore, chain of custody documents were made available the tools into ELIMINase for 5 s, followed by three washes in deionized for this study in order to evaluate their integrity. The objectives of this water. DNA extraction was performed using the Qiagen DNeasy® Blood study were to use DNA barcoding technology to study prevalence of and Tissue kit (Qiagen, Mississauga, Canada) according to manufac- finfish mislabelling among targeted taxa at different stages ofthesea- turer's instructions. food supply chain (in an effort to pinpoint the sources of mislabelling Fish cocktail primers were used to amplify the COX-1 gene from and to determine to what extent each step in the supply chain con- finfish DNA (Table 1). When fish cocktail primers failed to amplify tributes to finfish mislabelling in Southern Ontario), to establish base- COX-1 gene from finfish DNA, mammal cocktail primers were used line data on key commodities, and to evaluate discrepancies in chain of (Table 1). Mammal cocktail primers were designed for barcoding of custody documents for finfish products. mammals but were found to perform well with seafood when fish pri- mers failed (Ivanova et al., 2007). When both fish cocktail and mammal 2. Materials and methods cocktail primers failed, mini-barcoding primers were used (Table 1). Mini-barcode primers amplify a shorter region (below 200 bp), which 2.1. Specimen collection is advantageous when attempting to amplify degraded DNA (Ivanova
Recommended publications
  • OVERVIEW of FOOD FRAUD in the FISHERIES SECTOR Cover Photo: Mussel Farm in the Philippines
    FIAM/C1165 (En) FAO Fisheries and Aquaculture Circular ISSN 2070-6065 OVERVIEW OF FOOD FRAUD IN THE FISHERIES SECTOR Cover photo: Mussel farm in the Philippines. © FAO/A. Reilly. FAO Fisheries and Aquaculture Circular No. 1165 FIAM/C1165 (En) OVERVIEW OF FOOD FRAUD IN THE FISHERIES SECTOR Alan Reilly Consultant Fisheries and Aquaculture Policy and Resources Division Food and Agriculture Organization FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-130402-0 © FAO, 2018 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Microalgae Schizochytrium Sp. in Feed for Piau Leporinus Friderici
    American Journal of Animal and Veterinary Sciences Original Research Paper Microalgae Schizochytrium sp. in Feed for Piau Leporinus friderici 1Aline D.S. Prates, 1Marianne Schorer, 1Guilherme S. Moura, 2Eduardo A.T. Lanna, 3Gustavo F. Castro and 1Marcelo M. Pedreira 1Laboratory of Aquaculture and Aquatic Ecology, Federal University of the Jequitinhonha and Mucuri Valleys, Highway MGT 367, km 583 Alto da Jacuba, nº 5000, zip code 30100-000 Diamantina, MG, Brazil 2Laboratory of Nutrition of Aquatic Organisms, Federal University of Viçosa, Avenue Peter Henry Rolfs, w/n - University Campus, Viçosa - MG, 36570-900 Viçosa, MG, Brazil 3Laboratory of Animal Nutrition, Federal University of the Jequitinhonha and Mucuri Valleys, Highway MGT 367, km 583 Alto da Jacuba, nº 5000, CEP 30100-000 Diamantina, MG, Brazil Article history Abstract: The objective of the study was to evaluate the growth of piau Received: 18-06-2018 (Leporinus friderici ) juveniles fed with diet supplemented with different Revised: 19-09-2018 levels of Schizochytrium sp. One hundred and forty juveniles of L. friderici Accepted: 31-10-2018 were stocked in 20 aquariums (35 L) at the density of 0.2 fish L −1, weighing Corresponding Author: and measuring 11.80±1.08 g and 9.68±0.31 cm, respectively. The feeds were prepared and supplemented with 0, 10, 20, 30 and 40 g of Schizochytrium sp. Marianne Schorer −1 th Laboratory of Aquaculture and kg of diet. On the 60 day, all juveniles were collected for measurement of Aquatic Ecology, Federal the following parameters: Feed intake (g day −1), weight (g), weight gain (g), University of the Jequitinhonha food conversion, total length (cm), Specific Growth Rate (SGR) and Fulton’s and Mucuri Valleys, Highway condition factor (K).
    [Show full text]
  • Fish in Disguise: Seafood Fraud in Korea
    Fish in disguise: Seafood fraud in Korea A briefing by the Environmental Justice Foundation 1 Executive summary Between January and December 2018, the Environmental Justice Foundation (EJF) used DNA testing to determine levels of seafood fraud in the Republic of Korea. The results showed that over a third of samples tested were mislabelled. This mislabelling defrauds consumers, risks public health, harms the marine environment and can be associated with serious human rights abuses across the world. These findings demonstrate the urgent need for greater transparency and traceability in Korean seafood, including imported products. Key findings: • Over a third of seafood samples (34.8%, 105 of 302 samples) genetically analysed were mislabelled. • Samples labelled Fleshy Prawn, Fenneropenaeus chinensis (100%), Japanese Eel, Anguilla japonica (67.7%), Mottled Skate, Raja pulchra (53.3%) and Common Octopus, Octopus vulgaris (52.9%) had the highest rates of mislabelling. • Not a single sample labelled Fleshly Prawn was the correct species. • Mislabelling was higher in restaurants, fish markets and online than in general markets or superstores. • By processed types, sushi (53.9%), fresh fish (38.9%) and sashimi (33.6%) were the most likely to be mislabelled. • The seafood fraud identified by this research has direct negative impacts for consumers. It is clear that for some species sampled consumers were likely to be paying more than they should. For example, more than half of the eel and skate samples that were labelled domestic were actually found to be imported, which can cost only half of the price of domestic products. Swordfish mislabelled as Bluefin Tuna can be sold for four to five times as much.
    [Show full text]
  • Pisces: Terapontidae) with Particular Reference to Ontogeny and Phylogeny
    ResearchOnline@JCU This file is part of the following reference: Davis, Aaron Marshall (2012) Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/27673/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/27673/ Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny PhD thesis submitted by Aaron Marshall Davis BSc, MAppSci, James Cook University in August 2012 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University 1 2 Statement on the contribution of others Supervision was provided by Professor Richard Pearson (James Cook University) and Dr Brad Pusey (Griffith University). This thesis also includes some collaborative work. While undertaking this collaboration I was responsible for project conceptualisation, laboratory and data analysis and synthesis of results into a publishable format. Dr Peter Unmack provided the raw phylogenetic trees analysed in Chapters 6 and 7. Peter Unmack, Tim Jardine, David Morgan, Damien Burrows, Colton Perna, Melanie Blanchette and Dean Thorburn all provided a range of editorial advice, specimen provision, technical instruction and contributed to publications associated with this thesis. Greg Nelson-White, Pia Harkness and Adella Edwards helped compile maps. The project was funded by Internal Research Allocation and Graduate Research Scheme grants from the School of Marine and Tropical Biology, James Cook University (JCU).
    [Show full text]
  • Eliminating Seafood Fraud: a Fishy Approach to Food Policy
    Eliminating Seafood Fraud: A Fishy Approach to Food Policy Coastal Routes Policy Briefs #19-01 Emily De Sousa Department of Geography, Environment, and Geomatics University of Guelph Coastal Routes Policy Briefs Series Editor: Philip A. Loring, PhD www.coastalroutes.org Twitter @Coastal_Routes Coastal Routes is a network of researchers, coastal communities, and non-profit organizations all united by our mission of supporting verdant, sustainable, and just coastal livelihoods and places. We are funded primarily by the Social Sciences and Humanities Research Council of Canada and the Arrell Food Institute at the University of Guelph. Cite As: De Sousa, E. 2019. “Eliminating Seafood Fraud: A Fishy Approach to Food Policy.” Coastal Routes Policy Briefs #19-01. Guelph, ON. © 2019 Emily De Sousa. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which means that you can use, modify, and distribute this document freely, as long as you attribute the original work to the author and do not use the derivative work for commercial purposes. Summary Seafood mislabeling and fraud is a significant problem for Canada, with impacts that accrue across the supply chain, from producers to consumers. To improve fisheries sustainability, support the Canadian seafood industry, and enable Canadians to achieve a healthful and climate friendly diet, new policy measures are needed to combat seafood fraud, including an update to the Safe Food for Canadians regulations, use of DNA barcoding technology, and improved seafood labeling regulations. Context Seafood is a significant source of protein for nearly 3 billion people around the world and contributes $6 billion to the Canadian economy.
    [Show full text]
  • Biological Characteristics of Jade Perch (Scortumbarcoo)
    Research Article Oceanogr Fish Open Access J Volume 8 Issue 4 - October 2018 Copyright © All rights are reserved by Xing Ye DOI: 10.19080/OFOAJ.2018.08.555743 Biological Characteristics of Jade Perch (Scortum Barcoo) Jie Hu1, Ningning Yan1,2, Chengfei Sun1,2, Junjian Dong1 and Xing Ye1* 1Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Chinese Academy of Fishery China 2College of Fisheries and Life Science, Shanghai Ocean University, China Submission: October15, 2018; Published: October 26, 2018 Corresponding author: Xing Ye, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou 510385, China; Tel: ; Fax: + ; Email: Abstract Jade perch (Scortum Barcoo) is a highly nutritious fresh water bass species native in Australia and now being a promising candidate for aquaculture in China. To provide a fundamental biological basis for future germplasm improvement and exploitation of jade perch, biological characteristics of jade perch, including propagation, morphological and genetic characters were analyzed in this study. Jade perch becomes sexually mature at four-year-old. Zygotes of jade perch are transparent, buoyant, and swell upon absorption of water to up to 2.1±0.3mm in diameter. At a water temperature of 27.5±2°C, zygoteshatched 21-26h after fertilization. Comparison of morphological characters between two- and six-month-old jade perch revealed that the proportion of the head with respect to the body decreased significantly (P<0.05), while the proportion of abdominal fat deposits increased significantly (P<0.05). Chromosome number of jade perch is 48, karyo type is 2sm + 2m+ 44t, and relativeKeywords: DNA Jade content perch; is 168.27±13.91,Embryonic development; which is significantly Morphological lower characters; than that ofGenetic another characters; bass species, Gonadal largemouth development bass (194.55±15.85) (P<0.05).
    [Show full text]
  • A List of the Vertebrates of South Australia
    VERTEBRATES OF SOUTH AUSTRALI,A ?s BDITBD BY !líi C.H.S. WATTS ie4 l i ` er'P^{q L' C" /PA', o s VERTEBRATES OF SOUTH AUSTRALIA EDITED BY C.H.S. WATTS South Australian Museum Prepared by the curators of vertebrates at the South Australian Museum and officers of the Information Systems Branch, Department of Environment and Planning Published by the Biological Survey Coordinating Committee and the Department of Environment and Planning, South Australia. Adelaide 1990 ® Department of Environment and Planning South Australia 1990 First edition (edited by H.J. Aslin) published 1985 Second edition (edited by C.H.S. Watts) published 1990 Design and layout by Technical Services Division Department of Environment and Planning ISBN 0 7308 0482 8 Index no. 11821 Introduction 1 Environmental Provinces of South Australia 5 Mammals 7 Birds 21 Reptiles & Amphibians 55 Freshwater Fishes 69 Index of Common Names 79 Index of Generic Names 81 SYMBOLS USED Ex =Extinct 2 E = Endangered 2 V = Vulnerable 2 R= Rare 2 I = Indeterminate Status 3 C= Common (used in Mammal and Bird section only) 3 U= Uncommon (used in Mammal and Bird section only) 3 O= Occasional (used in Mammal and Bird section only) 3 * Introduced Species + = Only nominate subspecies in South Australia ()= No specimen in S.A. Museum collections # = Only recorded from artificial habitats (p.69) (Fishes only) ? = Questionable Record 1 This list includes all species of vertebrate animals reliably reported to have occurred in South Australia as free- living forms during the period of European settlement of the State. It has been prepared from a variety of published sources, (the major ones of which are cited in the various sections), and from the specimen collections held by the South Australian Museum, and, in some cases, other Australian museums.
    [Show full text]
  • Monthly Summary of Articles on Food Fraud and Adulteration Retrieved Mainly from the JRC Tool Medisys (
    September 2016 Monthly Summary of Articles on Food Fraud and Adulteration Retrieved mainly from the JRC tool Medisys (http://medisys.newsbrief.eu/) Food Fraud Cases 02/09/16 - Bluefin Tuna and Swordfish without labelling discovered in Monflacone, Italy Italy 700 kg of Bluefin Tuna and Swordfish coming supposedly from Sicilia were discovered without any label of origin in Monfalcone in Northern Italy. The products were in bad shape and to be commercialized on Fish the markets of the Friul Venezia Julia region. Mislabelling ANSA 03/09/16 - Eight brands of olive oil failed quality tests in Brazil Brazil Out of 20 brands tested by Proteste (a consumer association), 8 did not meet the quality standards. Four of them contained other vegetable oils (substitution) and another four failed the sensory tests for extra Olive oil virgin olive oil (mislabelling). The organisation requests the withdrawal of the fraudulent products from Substitution the market. Mislabelling Proteste official website Estado de Minas (em.com.br) 10/09/16 - 1176 bottles and 29 000 litres of unlabelled wine seized around Naples Italy The local fraud brigades closed an entire beverage facility following poor hygienic conditions and blatant Wine lack of documentation. Particularly 29 000 litres of bulk wine were lacking any traceability. The value of the whole structure is estimated to 1 million EUR. Mislabelling Origin masking Otto Pagine (Napoli) 16/09/16 - 700 kg of seafood without traceability in Sardinia Italy 700 kg of fish and seafood were seized in a port of Sardinia, lacking any documentation on the origin. Fish The incriminated company, based in Naples, was fined 4500 EUR.
    [Show full text]
  • Download the Report
    UNTRACEABLE THE CONSEQUENCES OF CANADA’S POORLY REGULATED SEAFOOD SUPPLY CHAINS UNTRACEABLE OCEANA oceana.cocCANADAeana.ca1 Canada is losing up to $93.8 million in tax revenue each year due to the illicit seafood product trade. EXECUTIVE SUMMARY ................................................................................................ 3 WHAT IS ILLEGAL, UNREPORTED AND UNREGULATED FISHING? ........................................ 5 ECONOMIC COSTS ..................................................................................................... 8 HUMAN COSTS ........................................................................................................ 10 SOCIAL AND ENVIRONMENTAL COSTS ......................................................................... 11 SEAFOOD FRAUD AND MISLABELLING .......................................................................... 12 IMPROVING SEAFOOD TRANSPARENCY ....................................................................... 14 RECOMMENDATIONS ................................................................................................ 16 CONSUMER SUPPORT ............................................................................................... 16 BOAT-TO-PLATE TRACEABILITY : A GOVERMENT COMMITMENT ....................................... 17 REFERENCES ............................................................................................................ 18 Published in November 2020 by Oceana Canada Author: Sayara Thurston DOI: 10.5281/zenodo.4148172 Credit frontUNTRACEABLE
    [Show full text]
  • The Global Reach of Seafood Fraud: a Current Review of the Literature
    The Global Reach of Seafood Fraud: a Current Review of the Literature June 2014 Authors: Rachel E. Golden and Kimberly Warner, Ph.D. Seafood fraud, the misrepresentation of seafood, has been discovered all around the world. Seafood fraud can take many forms, including false labeling, species substitution, short-weighting and over-glazing to hide the correct identity, origin or weight of the seafood. Oceana‟s campaign to Stop Seafood Fraud focuses on a particular type of fraud: species substitution. To date, Oceana has conducted six seafood studies, which revealed mislabeling in 20 states and Washington, D.C., as well as in France. Oceana‟s National report, released in 2013, is one of the most widely cited reports about seafood fraud in the media. Notably, many other scientists, governments, students and conservation and consumer organizations have conducted studies focused on seafood fraud, including species substitution. Oceana compiled a review of these studies from around the world to assess the global scope of seafood fraud, mislabeling and species substitutions. In this report, we present major findings from the literature review including general trends and alarming examples about the impact of seafood fraud on our oceans, wallets and health. Major findings from the literature review All studies that have investigated seafood fraud have found it – not a single study has reported 0% fraud overall. The vast majority (91%) of studies focused their sampling at the retail end of the supply chain (restaurants and grocery stores). The few studies that sampled mid-chain were split between landings, distributors, processors, and wholesalers. Along with six Oceana studies, the review covers 67 peer-reviewed studies, seven government reports and 23 news articles for a total of 103 sources.
    [Show full text]
  • Pcr-Based Dgge Identification of Bacteria and Yeasts
    ESTABLISHMENT OF A GENETIC DATABASE AND MOLECULAR METHODS FOR THE IDENTIFICATION OF FISH SPECIES AVAILBLE ON THE SOUTH AFRICAN MARKET DONNA-MAREÈ CAWTHORN Dissertation presented for the degree of DOCTOR OF PHILOSOPHY (FOOD SCIENCE) in the Faculty of AgriSciences at Stellenbosch University Promotor: Prof. R.C. Witthuhn Co-promotor: Dr. H.A. Steinman December 2011 Stellenbosch University http://scholar.sun.ac.za ii DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. 08 November 2011 _________________________ ___________________ Donna-Mareè Cawthorn Date Copyright © 2011 Stellenbosch University All rights reserved Stellenbosch University http://scholar.sun.ac.za iii ABSTRACT Consumers have the right to accurate information on the fish products they purchase to enable them to make educated seafood selections that will not endanger their own wellbeing or the wellbeing of the environment. Unfortunately, marine resource scarcity, financial incentives and inadequate or poorly enforced regulations have all promoted the mislabelling of fish species on global markets, the results of which may hold economic, conservation and health consequences. The primary aims of this study were to determine the most commonly available fish species on the South African market, to establish and compare DNA-based methods for the unambiguous identification of these species and to utilise the most applicable methods to evaluate the extent of mislabelling on the local fisheries market.
    [Show full text]
  • Testing Potential Fish Fraud in Community-Supported Fisheries
    University of Vermont ScholarWorks @ UVM UVM Honors College Senior Theses Undergraduate Theses 2016 Testing Potential Fish Fraud in Community-Supported Fisheries Ryan J. Tartre University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/hcoltheses Recommended Citation Tartre, Ryan J., "Testing Potential Fish Fraud in Community-Supported Fisheries" (2016). UVM Honors College Senior Theses. 174. https://scholarworks.uvm.edu/hcoltheses/174 This Honors College Thesis is brought to you for free and open access by the Undergraduate Theses at ScholarWorks @ UVM. It has been accepted for inclusion in UVM Honors College Senior Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. Testing Potential Fish Fraud in Community-Supported Fisheries UVM Honors College Senior Thesis By Ryan Tartre Abstract The seafood industry has long been plagued by the substitution of a species under a false label. Seafood mislabeling is a major concern in the management of fish and marine species. Incorrect labels hamper the ability to estimate stock size effectively, reduce consumer choice, and represent potential health hazards. The rates of seafood fraudulence have been shown to differ across businesses and markets, and in recent years, community-supported fishery programs (CSFs) have sprung up as an alternative to fish markets and grocery stores. Using genetic analysis, I show that 17 out of 41 (41.5%) samples examined from multiple markets in New Hampshire and Maine were fraudulent. The rates of fraudulent labeling differed across species and across markets, with community-supported fishery programs having the lowest levels of fraud (3 out of 10 samples, 30%) followed by restaurants (33%), fish markets (44%), sushi restaurants (50%) and grocery stores (58%).
    [Show full text]