Mccune-Albright Syndrome with Exophthalmos: a Case Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagnosis and Treatment of Intramedullary Osteosclerosis
Abe et al. BMC Musculoskeletal Disorders (2020) 21:762 https://doi.org/10.1186/s12891-020-03758-5 CASE REPORT Open Access Diagnosis and treatment of intramedullary osteosclerosis: a report of three cases and literature review Kensaku Abe, Norio Yamamoto, Katsuhiro Hayashi, Akihiko Takeuchi* , Shinji Miwa, Kentaro Igarashi, Takashi Higuchi, Yuta Taniguchi, Hirotaka Yonezawa, Yoshihiro Araki, Sei Morinaga, Yohei Asano and Hiroyuki Tsuchiya Abstract Background: Intramedullary osteosclerosis (IMOS) is a rare condition without specific radiological findings except for the osteosclerotic lesion and is not associated with family history and infection, trauma, or systemic illness. Although the diagnosis of IMOS is confirmed after excluding other osteosclerotic lesions, IMOS is not well known because of its rarity and no specific feature. Therefore, these situations might result in delayed diagnosis. Hence, this case report aimed to investigate three cases of IMOS and discuss imaging findings and clinical outcomes. Case presentation: All three cases were examined between 2015 and 2019. The location of osteosclerotic lesions were femoral diaphyses in the 60-year-old man (Case 1) and 41-year-old woman (Case 2) and tibial diaphysis in the 44-year-old woman (Case 3). All cases complained of severe pain and showed massive diaphyseal osteosclerotic lesions in plain radiograms and computed tomography (CT) scans. Cases 2 and 3 were examined using the triphasic bone scan, and a fusiform-shaped intense area of the tracer uptake on delayed bone image was detected in both cases without (Case 2) or slightly increased vascularity (Case 3) on the blood pool image, which was reported as a specific finding of IMOS. -
Periapical Radiopacities
2016 self-study course two course The Ohio State University College of Dentistry is a recognized provider for ADA CERP credit. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Concerns or complaints about a CE provider may be directed to the provider or to the Commission for Continuing Education Provider Recognition at www.ada.org/cerp. The Ohio State University College of Dentistry is approved by the Ohio State Dental Board as a permanent sponsor of continuing dental education. This continuing education activity has been planned and implemented in accordance with the standards of the ADA Continuing Education Recognition Program (ADA CERP) through joint efforts between The Ohio State University College of Dentistry Office of Continuing Dental Education and the Sterilization Monitoring Service (SMS). ABOUT this COURSE… FREQUENTLY asked QUESTIONS… . READ the MATERIALS. Read and Q: Who can earn FREE CE credits? review the course materials. COMPLETE the TEST. Answer the A: EVERYONE - All dental professionals eight question test. A total of 6/8 in your office may earn free CE questions must be answered correctly credits. Each person must read the contact for credit. course materials and submit an online answer form independently. SUBMIT the ANSWER FORM ONLINE. You MUST submit your answers ONLINE at: Q: What if I did not receive a confirmation ID? us http://dentistry.osu.edu/sms-continuing-education A: Once you have fully completed your . -
Hematological Diseases and Osteoporosis
International Journal of Molecular Sciences Review Hematological Diseases and Osteoporosis , Agostino Gaudio * y , Anastasia Xourafa, Rosario Rapisarda, Luca Zanoli , Salvatore Santo Signorelli and Pietro Castellino Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (A.X.); [email protected] (R.R.); [email protected] (L.Z.); [email protected] (S.S.S.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +39-095-3781842; Fax: +39-095-378-2376 Current address: UO di Medicina Interna, Policlinico “G. Rodolico”, Via S. Sofia 78, 95123 Catania, Italy. y Received: 29 April 2020; Accepted: 14 May 2020; Published: 16 May 2020 Abstract: Secondary osteoporosis is a common clinical problem faced by bone specialists, with a higher frequency in men than in women. One of several causes of secondary osteoporosis is hematological disease. There are numerous hematological diseases that can have a deleterious impact on bone health. In the literature, there is an abundance of evidence of bone involvement in patients affected by multiple myeloma, systemic mastocytosis, thalassemia, and hemophilia; some skeletal disorders are also reported in sickle cell disease. Recently, monoclonal gammopathy of undetermined significance appears to increase fracture risk, predominantly in male subjects. The pathogenetic mechanisms responsible for these bone loss effects have not yet been completely clarified. Many soluble factors, in particular cytokines that regulate bone metabolism, appear to play an important role. An integrated approach to these hematological diseases, with the help of a bone specialist, could reduce the bone fracture rate and improve the quality of life of these patients. -
Molecular Characterization of Three Canine Models of Human Rare Bone Diseases: Caffey, Van Den Ende-Gupta, and Raine Syndromes
RESEARCH ARTICLE Molecular Characterization of Three Canine Models of Human Rare Bone Diseases: Caffey, van den Ende-Gupta, and Raine Syndromes Marjo K. Hytönen1,2,3, Meharji Arumilli1,2,3, Anu K. Lappalainen4, Marta Owczarek-Lipska5, Vidhya Jagannathan5, Sruthi Hundi1,2,3, Elina Salmela1,2,3, Patrick Venta6, Eva Sarkiala4, Tarja Jokinen1,4, Daniela Gorgas7, Juha Kere2,3,8, Pekka Nieminen9, Cord Drögemüller5☯, a11111 Hannes Lohi1,2,3☯* 1 Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland, 2 Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland, 3 The Folkhälsan Institute of Genetics, Helsinki, Finland, 4 Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland, 5 Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 6 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America, 7 Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, OPEN ACCESS University of Bern, Bern, Switzerland, 8 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, 9 Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Citation: Hytönen MK, Arumilli M, Lappalainen AK, Finland Owczarek-Lipska M, Jagannathan V, Hundi S, et al. ☯ (2016) Molecular Characterization of Three Canine These authors contributed equally to this work. * [email protected] Models of Human Rare Bone Diseases: Caffey, van den Ende-Gupta, and Raine Syndromes. PLoS Genet 12(5): e1006037. doi:10.1371/journal. pgen.1006037 Abstract Editor: Leigh Anne Clark, Clemson University, UNITED STATES One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. -
Core Decompression for Avascular Necrosis (For North Carolina Only) – Community Plan Medical Policy
UnitedHealthcare® Community Plan Medical Policy Core Decompression for Avascular Necrosis (for North Carolina Only) Policy Number: CSNCT0219.01 Effective Date: July 1, 2021 Instructions for Use Table of Contents Page Related Policies Application.......................................................................................... 1 None Coverage Rationale ........................................................................... 1 Applicable Codes .............................................................................. 1 Description of Services ..................................................................... 2 Clinical Evidence ............................................................................... 3 U.S. Food and Drug Administration ................................................ 7 References ......................................................................................... 7 Policy History/Revision Information................................................ 8 Instructions for Use ........................................................................... 8 Application This Medical Policy only applies to the state of North Carolina. Coverage Rationale Core decompression is proven and medically necessary for treating early (pre-collapse stage I and II) avascular necrosis of the femoral head. Core decompression is unproven and not medically necessary for treating late avascular necrosis of the femoral head or for avascular necrosis elsewhere, including the humeral head, the distal femur, the talus, or the -
Sclerosing Bone Dysplasias: Genetic, Clinical and Radiology Update of Hereditary and Non-Hereditary Disorders
BJR © 2016 The Authors. Published by the British Institute of Radiology Received: Revised: Accepted: http://dx.doi.org/10.1259/bjr.20150349 26 April 2015 14 December 2015 17 February 2016 Cite this article as: Boulet C, Madani H, Lenchik L, Vanhoenacker F, Amalnath DS, De Mey J, et al. Sclerosing bone dysplasias: genetic, clinical and radiology update of hereditary and non-hereditary disorders. Br J Radiol 2016; 89: 20150349. REVIEW ARTICLE Sclerosing bone dysplasias: genetic, clinical and radiology update of hereditary and non-hereditary disorders 1CEDRIC BOULET, MD, 2HARDI MADANI, FRCR, 3LEON LENCHIK, MD, 4FILIP VANHOENACKER, MD, PhD, 5DEEPAK S AMALNATH, MD, 1JOHAN DE MEY, MD, PhD and 1MICHEL DE MAESENEER, MD, PhD 1Department of Radiology, Universitair Ziekenhuis Brussel, Brussel, Belgium 2Department of Radiology, Royal Free Hospital, London, UK 3Department of Radiology, Wake Forest University, Winston Salem, NC, USA 4Department of Radiology, Universitair Ziekenhuis Anwerpen, Antwerpen, Belgium 5Department of Medicine, Indira Gandhi Medical College and Research Institute, Pondicherry, India Address correspondence to: Dr Michel De Maeseneer E-mail: [email protected] ABSTRACT There is a wide variety of hereditary and non-hereditary bone dysplasias, many with unique radiographic findings. Hereditary bony dysplasias include osteopoikilosis, osteopathia striata, osteopetrosis, progressive diaphyseal dysplasia, hereditary multiple diaphyseal sclerosis and pyknodysostosis. Non-hereditary dysplasias include melorheostosis, intramedullary osteosclerosis and overlap syndromes. Although many of these dysplasias are uncommon, radiologists should be familiar with their genetic, clinical and imaging findings to allow for differentiation from acquired causes of bony sclerosis. We present an overview of hereditary and non-hereditary bony dysplasias with focus on the pathogenesis, clinical and radiographic findings of each disorder. -
Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges
PERSPECTIVE JBMR Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges Michael P Whyte Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, and Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA ABSTRACT Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Autosomal inheritance (dominant or recessive) from among more than 300 predominantly missense defects of TNSALP (ALPL) explains HPP’s broad-ranging severity, the greatest of all skeletal diseases. In health, TNSALP is linked to cell surfaces and richly expressed in the skeleton and developing teeth. In HPP,TNSALP substrates accumulate extracellularly, including inorganic pyrophosphate (PPi), an inhibitor of mineralization. The PPi excess can cause tooth loss, rickets or osteomalacia, calcific arthropathies, and perhaps muscle weakness. Severely affected infants may seize from insufficient hydrolysis of pyridoxal 5‘- phosphate (PLP), the major extracellular vitamin B6. Now, significant successes are documented for newborns, infants, and children severely affected by HPP given asfotase alfa, a hydroxyapatite-targeted recombinant TNSALP. Since fall 2015, this biologic is approved by regulatory agencies multinationally typically for pediatric-onset HPP. Safe and effective treatment is now possible for this last rickets to have a medical therapy, -
Osteopetrosis Associated with Familial Paraplegia: Report of a Family
Paraplegia (1975), 13, 143-152 OSTEOPETROSIS ASSOCIATED WITH FAMILIAL PARAPLEGIA: REPORT OF A FAMILY By SKIP JACQUES*, M.D., JOHN T. GARNER, M. D., DAVID JOHNSON, M.D. and C. HUNTER SHELDEN, M. D. Departments of Neurosurgery and Radiology, Huntington Memorial Hospital, Pasadena, Ca., and the Huntington Institute of Applied Medical Research, Pasadena, Ca., U.S.A. Abstract. A clinical analysis of three members of a family with documented osteopetrosis and familial paraplegia is presented. All patients had a long history of increased bone density and slowly progressing paraparesis of both legs. A thorough review of the literature has revealed no other cases which presented with paraplegia without spinal cord com pression. Although the etiologic factor or factors remain unknown, our review supports the contention that this is a distinct clinical entity. IN 1904, a German radiologist, Heinrich Albers-Schonberg, described a 26-year old man with multiple fractures and generalised sclerosis of the skeleton. The disease has henceforth commonly been known as Albers-Schonberg disease or marble osteopetrosis, a term first introduced by Karshner in 1922. Other eponyms are bone disease, osteosclerosis fragilis generalisata, and osteopetrosis generalisata. Approximately 300 cases had been reported in the literature by 1968. It has been generally accepted that the disease presents in two distinct forms, an infantile progressive disease and a milder form in childhood and adolescence. The two forms differ clinically and genetically. A dominant pattern of inheritance is usually seen in the benign type whereas the severe infantile form is usually inherited as a Mendelian recessive. This important distinction has not been well emphasised. -
Inflammation of the Bone Inflammation of the Bone Periapical Inflammatory Lesions
Inflammatory Lesions Most common pathologic conditions of the jaws Teeth create a direct pathway for inflammatory agents and pathogens to invade the bone when Inflammatory Lesions of the Jaws caries and periodontal Steven R. Singer, DDS disease are present Inflammatory Lesions Bone Metabolism Inflammation is the Balance of bone resorption by body’s response to chemical, physical, or osteoclasts and bone deposition by microbial injury osteoblasts First, the inflammatory Osteoblasts mediate the resorptive response destroys the causative agent and activity of the osteoclasts walls off the injured Inflammatory conditions of bone exist area along a continuum, with varying clinical Second, it sets up an environment for repair features of the injured tissue Inflammation of the Bone Inflammation of the Bone Periapical Inflammatory Lesions Periodontal Osteomyelitis Lesions Pericoronitis 1 The Cardinal Signs of Inflammation Acute v. Chronic Lesions Acute Lesions Chronic Lesions Recent onset Long, insidious onset Rapid Prolonged course Pronounced pain Intermittent, low- Often with fever and grade fever Heat swelling Gradual swelling Redness Swelling Pain Loss of Function Acute v. Chronic Lesions Without a second radiograph, exposed at a different time, it is often impossible to determine if a lesion is chronic or acute. Therefore, temporal descriptors are usually omitted from radiographic descriptions Radiographic Features Location Periapical Inflammatory Lesions Epicenter of the lesion is usually at the apex May also be -
Blueprint Genetics Osteopetrosis and Dense Bone Dysplasia Panel
Osteopetrosis and Dense Bone Dysplasia Panel Test code: MA2001 Is a 25 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of osteopetrosis. The genes on this panel are included in the Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel. About Osteopetrosis and Dense Bone Dysplasia Autosomal dominant osteopetrosis (ADO, also known as Albers-Schönberg disease) is typically an adult-onset, more benign form whereas autosomal recessive osteopetrosis (ARO), also termed malignant infantile osteopetrosis, presents soon after birth, is often severe and leads to death if left untreated. Autosomal recessive osteopetrosis (ARO) is a genetically and phenotypically heterogeneous disease; most forms result from late endosomal trafficking defects that prevent osteoclast ruffled‐border formation. Hematopoietic stem cell transplantation (HSCT) can cure ARO if given in early life to patients with osteoclast‐intrinsic disease without neurodegenerative complications. New treatments that target RANKL/RANK signaling offer promise in ARO subtypes that currently cannot be cured by HSCT and to prevent hypercalcemia after HSCT. Paget’s disease is a common metabolic bone disease characterized by focal abnormalities of increased bone turnover affecting one or more sites throughout the skeleton, primarily the axial skeleton. Bone lesions in this disorder show evidence of increased osteoclastic bone resorption and disorganized bone structure. Genetic factors play an important role in the disease. In some cases, Paget’s disease is inherited in an autosomal dominant manner and the most common cause for this is a mutation in the SQSTM1 gene. Mutations in TNFRSF11A, TNFRSF11B and VCP have been identified in rare syndromes with Paget’s disease- like features. -
Avascular Necrosis of the Foot and Ankle in a Patient with Systemic Sclerosis: a Case Based Review
СОВPEМЕННАЯ РЕВМАТОЛОГИЯ №1’21 КЛИНИЧЕСКИЕ НАБЛЮДЕНИЯ / CLINICAL OBSERVATIONS Avascular Necrosis of the Foot and Ankle in a Patient with Systemic Sclerosis: A Case Based Review Heline Wastyn1, Mathias Leys, M.D.2, Frederick Michels, M.D.3, Anne-Leen Deleu, M.D.4, Evie Vereecke, prof.5, Giovanni Matricali, prof., M.D., PhD6, Stefan Clockaerts, M.D.7 1Medical Student, Faculty of Medicine, KU Leuven, Belgium; 2Department of Pneumology, AZ Groeninge Kortrijk, Belgium; 3Department of Orthopedics and Traumatology, AZ Groeninge Kortrijk, Belgium; 4Resident in Department of Nuclear Medicine, AZ Groeninge Kortrijk, Belgium; 5Department of Development and Regeneration, Kulak Kortrijk Campus, Belgium; 6Department of Orthopedic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Heverlee, Belgium; Institute of Orthopaedic Research & Training (IORT), Leuven, Belgium; 7Foot and Ankle Unit, Department of Orthopedics and Traumatology, AZ Sint-Maarten Mechelen, Belgium; Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium Address for correspondence: Preshoekstraat 33, 8930 Lauwe, Belgium This review describes a case of atraumatic avascular necrosis in the foot and ankle in a patient with systemic sclerosis who did not receive cor- ticosteroid therapy. Both avascular necrosis and systemic sclerosis are uncommon disease entities. This case demonstrates that vasculitis and secondary vasoconstriction in the pathogenesis of systemic sclerosis are important risk factors for the development of avascular necrosis of the foot and ankle. Therefore, if these patients develop chronic foot and ankle pain, avascular necrosis should be included in the differential diag- nosis, even if they do not receive corticosteroids. For the diagnosis and follow-up of avascular necrosis MRI remains the gold standard. -
Hypophosphatasia: an Overview for Physicians and Medical Professionals
This publication is distributed by Soft Bones Inc., The U.S. Hypophosphatasia Foundation. Hypophosphatasia: An Overview For Physicians and Medical Professionals Michael P. Whyte, M.D. Definition of hypophosphatasia (HPP) Hypophosphatasia (HPP) is the rare genetic form of rickets or osteomalacia that features paradoxically low serum alkaline phosphatase (ALP) activity. Classification Six clinical forms represent a useful classification of HPP. 1. Perinatal Hypophosphatasia 4. Adult Hypophosphatasia 2. Infantile Hypophosphatasia 5. Odontohypophosphatasia 3. Childhood Hypophosphatasia 6. Benign Prenatal Hypophosphatasia The expressivity (disease severity) of HPP ranges greatly with the clinical consequences spanning death in utero from an essentially unmineralized skeleton to problems only with teeth during adult life. The patient’s age at which bone disease becomes apparent distinguishes the perinatal, infantile, childhood, and adult forms. Those who exhibit only dental manifestations have odonto-HPP. The benign prenatal form of HPP is the newest group and manifests skeletal deformity in utero or at birth, but in contradistinction to perinatal HPP is clearly more mild and shows significant spontaneous postnatal improvement. | 2 | Clinical Features 1. Perinatal Hypophosphatasia This is the most severe form of HPP and was almost always fatal until enzyme replacement therapy became available for HPP. At delivery, limbs are shortened and deformed and there is caput membraneceum from profound skeletal hypomineralization. Unusual osteochondral spurs may pierce the skin and protrude laterally from the midshaft of the ulnas and fibulas. There can be a high pitched cry, irritability, periodic apnea with cyanosis and bradycardia, unexplained fever, anemia, and intracranial hemorrhage. Some affected neonates live a few days, but suffer increasing respiratory compromise from defects in the thorax and hypoplastic lungs.