Diagnosis and Treatment of Intramedullary Osteosclerosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Osgood- Schlatter Disease): a Review
Open Access Review Article DOI: 10.7759/cureus.780 Apophysitis of the Tibial Tuberosity (Osgood- Schlatter Disease): A Review Raju Vaishya 1 , Ahmad Tariq Azizi 2 , Amit Kumar Agarwal 1 , Vipul Vijay 1 1. Orthopaedics, Indraprastha Apollo Hospitals 2. Orthoapedics, Herat Regional Hospital, Herat, Afghanistan Corresponding author: Amit Kumar Agarwal, [email protected] Abstract Osgood-Schlatter disease (OSD) is a condition in which the patellar tendon insertion on the tibial tuberosity becomes inflamed. It is a well-known condition in late childhood characterized by pain and a bony prominence over the tibial tuberosity. The pain is usually exacerbated by physical activities like running, jumping, and climbing stairs. In the acute stage, the margins of the patellar tendon become blurred in radiographs due to the soft tissue swelling. After three to four months, bone fragmentation at the tibial tuberosity is viewed. In the sub-acute stage, soft tissue swelling resolves, but the bony ossicle remains. In the chronic stage, the bone fragment may fuse with the tibial tuberosity which can appear normal. The primary goal in the treatment of OSD is the reduction of pain and swelling over the tibial tuberosity. The patient should limit physical activities until the symptoms are resolved. In some cases, the patient should restrict physical activities for several months. The presence of pain with kneeling because of an ossicle that does not respond to conservative measures is the indication for surgery. In these cases, the removal of the ossicle, surrounding bursa, and the bony prominence is the treatment of choice. Categories: Orthopedics Keywords: tibial tuberosity, osgood-schlatter disease, apophysitis Introduction And Background Osgood-Schlatter disease (OSD, also called Lannelongue’s disease) is a condition in which the patellar tendon insertion on the tibial tuberosity becomes inflamed [1-2]. -
Periapical Radiopacities
2016 self-study course two course The Ohio State University College of Dentistry is a recognized provider for ADA CERP credit. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Concerns or complaints about a CE provider may be directed to the provider or to the Commission for Continuing Education Provider Recognition at www.ada.org/cerp. The Ohio State University College of Dentistry is approved by the Ohio State Dental Board as a permanent sponsor of continuing dental education. This continuing education activity has been planned and implemented in accordance with the standards of the ADA Continuing Education Recognition Program (ADA CERP) through joint efforts between The Ohio State University College of Dentistry Office of Continuing Dental Education and the Sterilization Monitoring Service (SMS). ABOUT this COURSE… FREQUENTLY asked QUESTIONS… . READ the MATERIALS. Read and Q: Who can earn FREE CE credits? review the course materials. COMPLETE the TEST. Answer the A: EVERYONE - All dental professionals eight question test. A total of 6/8 in your office may earn free CE questions must be answered correctly credits. Each person must read the contact for credit. course materials and submit an online answer form independently. SUBMIT the ANSWER FORM ONLINE. You MUST submit your answers ONLINE at: Q: What if I did not receive a confirmation ID? us http://dentistry.osu.edu/sms-continuing-education A: Once you have fully completed your . -
Knee Pain in Children, Part II: Limb- and Life-Threatening Conditions, Hip Pathology, and Effusion
Knee Pain in Children, Part II: Limb- and Life-threatening Conditions, Hip Pathology, and Effusion Michael Wolf, MD* *Pediatrics and Orthopedic Surgery, St Christopher’s Hospital for Children, Philadelphia, PA. Practice Gap Clinicians who evaluate knee pain must be able to recognize limb- and life-threatening conditions, hip pathology, or joint effusion and pursue the appropriate management. Objectives After reading the article, the reader should be able to: 1. Describe the presentation and treatment of common limb- and life-threatening conditions that can cause knee pain in children. 2. Delineate how hip pathology can contribute to knee pain in children and how such conditions should be diagnosed and treated. 3. Explain the diagnosis and treatment of conditions that may cause effusion in conjunction with knee pain in children. INTRODUCTION As noted in the first part of this three-part review of knee pain in children, the clinician can use the information gained from the history and physical examination in an algorithm to establish a working diagnosis and direct subsequent evaluation and management. The initial priorities are to identify emergent limb- and life-threatening conditions, hip pathology, or effusion (Table). LIMB- AND LIFE-THREATENING CONDITIONS Bacterial Infections Septic Arthritis. The knee is the most common site of septic arthritis in children. Usually, septic arthritis is characterized by the acute onset of steadily progressive knee pain with fever and a physical examination demonstrating effusion, warmth, AUTHOR DISCLOSURE Dr Wolf has disclosed fi erythema, and limited motion. Concern for septic bacterial arthritis in children no nancial relationships relevant to this article. This commentary does not contain a warrants emergent evaluation, including knee radiographs (anteroposterior [AP] discussion of an unapproved/investigative and lateral) and laboratory studies (complete blood cell [CBC] count with use of a commercial product/device. -
Hematological Diseases and Osteoporosis
International Journal of Molecular Sciences Review Hematological Diseases and Osteoporosis , Agostino Gaudio * y , Anastasia Xourafa, Rosario Rapisarda, Luca Zanoli , Salvatore Santo Signorelli and Pietro Castellino Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (A.X.); [email protected] (R.R.); [email protected] (L.Z.); [email protected] (S.S.S.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +39-095-3781842; Fax: +39-095-378-2376 Current address: UO di Medicina Interna, Policlinico “G. Rodolico”, Via S. Sofia 78, 95123 Catania, Italy. y Received: 29 April 2020; Accepted: 14 May 2020; Published: 16 May 2020 Abstract: Secondary osteoporosis is a common clinical problem faced by bone specialists, with a higher frequency in men than in women. One of several causes of secondary osteoporosis is hematological disease. There are numerous hematological diseases that can have a deleterious impact on bone health. In the literature, there is an abundance of evidence of bone involvement in patients affected by multiple myeloma, systemic mastocytosis, thalassemia, and hemophilia; some skeletal disorders are also reported in sickle cell disease. Recently, monoclonal gammopathy of undetermined significance appears to increase fracture risk, predominantly in male subjects. The pathogenetic mechanisms responsible for these bone loss effects have not yet been completely clarified. Many soluble factors, in particular cytokines that regulate bone metabolism, appear to play an important role. An integrated approach to these hematological diseases, with the help of a bone specialist, could reduce the bone fracture rate and improve the quality of life of these patients. -
Molecular Characterization of Three Canine Models of Human Rare Bone Diseases: Caffey, Van Den Ende-Gupta, and Raine Syndromes
RESEARCH ARTICLE Molecular Characterization of Three Canine Models of Human Rare Bone Diseases: Caffey, van den Ende-Gupta, and Raine Syndromes Marjo K. Hytönen1,2,3, Meharji Arumilli1,2,3, Anu K. Lappalainen4, Marta Owczarek-Lipska5, Vidhya Jagannathan5, Sruthi Hundi1,2,3, Elina Salmela1,2,3, Patrick Venta6, Eva Sarkiala4, Tarja Jokinen1,4, Daniela Gorgas7, Juha Kere2,3,8, Pekka Nieminen9, Cord Drögemüller5☯, a11111 Hannes Lohi1,2,3☯* 1 Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland, 2 Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland, 3 The Folkhälsan Institute of Genetics, Helsinki, Finland, 4 Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland, 5 Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 6 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America, 7 Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, OPEN ACCESS University of Bern, Bern, Switzerland, 8 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden, 9 Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Citation: Hytönen MK, Arumilli M, Lappalainen AK, Finland Owczarek-Lipska M, Jagannathan V, Hundi S, et al. ☯ (2016) Molecular Characterization of Three Canine These authors contributed equally to this work. * [email protected] Models of Human Rare Bone Diseases: Caffey, van den Ende-Gupta, and Raine Syndromes. PLoS Genet 12(5): e1006037. doi:10.1371/journal. pgen.1006037 Abstract Editor: Leigh Anne Clark, Clemson University, UNITED STATES One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. -
Core Decompression for Avascular Necrosis (For North Carolina Only) – Community Plan Medical Policy
UnitedHealthcare® Community Plan Medical Policy Core Decompression for Avascular Necrosis (for North Carolina Only) Policy Number: CSNCT0219.01 Effective Date: July 1, 2021 Instructions for Use Table of Contents Page Related Policies Application.......................................................................................... 1 None Coverage Rationale ........................................................................... 1 Applicable Codes .............................................................................. 1 Description of Services ..................................................................... 2 Clinical Evidence ............................................................................... 3 U.S. Food and Drug Administration ................................................ 7 References ......................................................................................... 7 Policy History/Revision Information................................................ 8 Instructions for Use ........................................................................... 8 Application This Medical Policy only applies to the state of North Carolina. Coverage Rationale Core decompression is proven and medically necessary for treating early (pre-collapse stage I and II) avascular necrosis of the femoral head. Core decompression is unproven and not medically necessary for treating late avascular necrosis of the femoral head or for avascular necrosis elsewhere, including the humeral head, the distal femur, the talus, or the -
Sclerosing Bone Dysplasias: Genetic, Clinical and Radiology Update of Hereditary and Non-Hereditary Disorders
BJR © 2016 The Authors. Published by the British Institute of Radiology Received: Revised: Accepted: http://dx.doi.org/10.1259/bjr.20150349 26 April 2015 14 December 2015 17 February 2016 Cite this article as: Boulet C, Madani H, Lenchik L, Vanhoenacker F, Amalnath DS, De Mey J, et al. Sclerosing bone dysplasias: genetic, clinical and radiology update of hereditary and non-hereditary disorders. Br J Radiol 2016; 89: 20150349. REVIEW ARTICLE Sclerosing bone dysplasias: genetic, clinical and radiology update of hereditary and non-hereditary disorders 1CEDRIC BOULET, MD, 2HARDI MADANI, FRCR, 3LEON LENCHIK, MD, 4FILIP VANHOENACKER, MD, PhD, 5DEEPAK S AMALNATH, MD, 1JOHAN DE MEY, MD, PhD and 1MICHEL DE MAESENEER, MD, PhD 1Department of Radiology, Universitair Ziekenhuis Brussel, Brussel, Belgium 2Department of Radiology, Royal Free Hospital, London, UK 3Department of Radiology, Wake Forest University, Winston Salem, NC, USA 4Department of Radiology, Universitair Ziekenhuis Anwerpen, Antwerpen, Belgium 5Department of Medicine, Indira Gandhi Medical College and Research Institute, Pondicherry, India Address correspondence to: Dr Michel De Maeseneer E-mail: [email protected] ABSTRACT There is a wide variety of hereditary and non-hereditary bone dysplasias, many with unique radiographic findings. Hereditary bony dysplasias include osteopoikilosis, osteopathia striata, osteopetrosis, progressive diaphyseal dysplasia, hereditary multiple diaphyseal sclerosis and pyknodysostosis. Non-hereditary dysplasias include melorheostosis, intramedullary osteosclerosis and overlap syndromes. Although many of these dysplasias are uncommon, radiologists should be familiar with their genetic, clinical and imaging findings to allow for differentiation from acquired causes of bony sclerosis. We present an overview of hereditary and non-hereditary bony dysplasias with focus on the pathogenesis, clinical and radiographic findings of each disorder. -
Radionuclide Bone Scintigraphy in Sports Injuries
Radionuclide Bone Scintigraphy in Sports Injuries Hans Van der Wall, MBBS, PhD, FRACP,* Allen Lee, MBBS, MMed, FRANZCR, FRAACGP, DDU,† Michael Magee, MBBS, FRACP,* Clayton Frater, PhD, ANMT, BHSM,† Harindu Wijesinghe, MBBS, FRCP,‡ and Siri Kannangara, MBBS, FRACP†,§ Bone scintigraphy is one of the mainstays of molecular imaging. It has retained its relevance in the imaging of acute and chronic trauma and sporting injuries in particular. The basic reasons for its longevity are the high lesional conspicuity and technological changes in gamma camera design. The implementation of hybrid imaging devices with computed tomography scanners colocated with the gamma camera has revolutionized the technique by allowing a host of improvements in spatial resolution and anatomical registration. Both bone and soft-tissue lesions can be visualized and identified with greater and more convincing accuracy. The additional benefit of detecting injury before anatomical changes in high-level athletes has cost and performance advantages over other imaging modalities. The applications of the new imaging techniques will be illustrated in the setting of bone and soft-tissue trauma arising from sporting injuries. Semin Nucl Med 40:16-30 © 2010 Elsevier Inc. All rights reserved. he uptake characteristics of the bone-seeking radiophar- Scintigraphy is also capable of detecting bone bruising, an Tmaceuticals are highly conducive to the localization of acute injury resulting from direct trauma that leads to trabec- trauma to bone or its attached soft-tissue structures. Bone ular microfractures without frank cortical disruption.1 The scintigraphy has an inherently high contrast-resolution, greater force transmission involved in cortical fracture en- which enables the detection of the pathophysiology of sures early detection by three-phase scintigraphy. -
Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges
PERSPECTIVE JBMR Hypophosphatasia: Enzyme Replacement Therapy Brings New Opportunities and New Challenges Michael P Whyte Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, and Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA ABSTRACT Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Autosomal inheritance (dominant or recessive) from among more than 300 predominantly missense defects of TNSALP (ALPL) explains HPP’s broad-ranging severity, the greatest of all skeletal diseases. In health, TNSALP is linked to cell surfaces and richly expressed in the skeleton and developing teeth. In HPP,TNSALP substrates accumulate extracellularly, including inorganic pyrophosphate (PPi), an inhibitor of mineralization. The PPi excess can cause tooth loss, rickets or osteomalacia, calcific arthropathies, and perhaps muscle weakness. Severely affected infants may seize from insufficient hydrolysis of pyridoxal 5‘- phosphate (PLP), the major extracellular vitamin B6. Now, significant successes are documented for newborns, infants, and children severely affected by HPP given asfotase alfa, a hydroxyapatite-targeted recombinant TNSALP. Since fall 2015, this biologic is approved by regulatory agencies multinationally typically for pediatric-onset HPP. Safe and effective treatment is now possible for this last rickets to have a medical therapy, -
Injuries and Normal Variants of the Pediatric Knee
Revista Chilena de Radiología, año 2016. ARTÍCULO DE REVISIÓN Injuries and normal variants of the pediatric knee Cristián Padilla C.a,* , Cristián Quezada J.a,b, Nelson Flores N.a, Yorky Melipillán A.b and Tamara Ramírez P.b a. Imaging Center, Hospital Clínico Universidad de Chile, Santiago, Chile. b. Radiology Service, Hospital de Niños Roberto del Río, Santiago, Chile. Abstract: Knee pathology is a reason for consultation and a prevalent condition in children, which is why it is important to know both the normal variants as well as the most frequent pathologies. In this review a brief description is given of the main pathologies and normal variants that affect the knee in children, not only the main clinical characteristics but also the findings described in the different, most used imaging techniques (X-ray, ultrasound, computed tomography and magnetic resonance imaging [MRI]). Keywords: Knee; Paediatrics; Bone lesions. Introduction posteromedial distal femoral metaphysis, near the Pediatric knee imaging studies are used to evaluate insertion site of the medial twin muscle or adductor different conditions, whether traumatic, inflammatory, magnus1. It is a common finding on radiography and developmental or neoplastic. magnetic resonance imaging (MRI), incidental, with At a younger age the normal evolution of the more frequency between ages 10-15 years, although images during the skeletal development of the distal it can be present at any age until the physeal closure, femur, proximal tibia and proximal fibula should be after which it resolves1. In frontal radiography, it ap- known to avoid diagnostic errors. Older children and pears as a radiolucent, well circumscribed, cortical- adolescents present a higher frequency of traumatic based lesion with no associated soft tissue mass, with and athletic injuries. -
Osteopetrosis Associated with Familial Paraplegia: Report of a Family
Paraplegia (1975), 13, 143-152 OSTEOPETROSIS ASSOCIATED WITH FAMILIAL PARAPLEGIA: REPORT OF A FAMILY By SKIP JACQUES*, M.D., JOHN T. GARNER, M. D., DAVID JOHNSON, M.D. and C. HUNTER SHELDEN, M. D. Departments of Neurosurgery and Radiology, Huntington Memorial Hospital, Pasadena, Ca., and the Huntington Institute of Applied Medical Research, Pasadena, Ca., U.S.A. Abstract. A clinical analysis of three members of a family with documented osteopetrosis and familial paraplegia is presented. All patients had a long history of increased bone density and slowly progressing paraparesis of both legs. A thorough review of the literature has revealed no other cases which presented with paraplegia without spinal cord com pression. Although the etiologic factor or factors remain unknown, our review supports the contention that this is a distinct clinical entity. IN 1904, a German radiologist, Heinrich Albers-Schonberg, described a 26-year old man with multiple fractures and generalised sclerosis of the skeleton. The disease has henceforth commonly been known as Albers-Schonberg disease or marble osteopetrosis, a term first introduced by Karshner in 1922. Other eponyms are bone disease, osteosclerosis fragilis generalisata, and osteopetrosis generalisata. Approximately 300 cases had been reported in the literature by 1968. It has been generally accepted that the disease presents in two distinct forms, an infantile progressive disease and a milder form in childhood and adolescence. The two forms differ clinically and genetically. A dominant pattern of inheritance is usually seen in the benign type whereas the severe infantile form is usually inherited as a Mendelian recessive. This important distinction has not been well emphasised. -
Painful Foot Presented by L
Postgrad Med J (1991) 67, 174- 175 © The Fellowship of Postgraduate Medicine, 1991 Postgrad Med J: first published as 10.1136/pgmj.67.784.174 on 1 February 1991. Downloaded from Diagnostic Images Painful foot Presented by L. Kreel and M.A. Al-Kutoubi Department ofDiagnostic Radiology and Organ Imaging, Chinese University ofHong Kong, Prince of Wales Hospital, Shatin, N. T., Hong Kong and Radiology Department, St Mary's Hospital, Praed Street, Paddington, London WI, UK The patient A woman of 57, known to have had a mastectomy for breast carcinoma, presented with a painful and slightly swollen left foot. Investigations Radiograph of left foot and isotope bone scan. Protected by copyright. I. l _| ... .. http://pmj.bmj.com/ on September 28, 2021 by guest. Figure 1 The 3rd metacarpal shows marked irregular bone loss, absent cortex and nodular sclerosis. There is diffuse sclerosis of the 2nd and 4th metatarsals with thin Figure 2 The isotope bone scan demonstrates intense periosteal reactions. The tarsus shows marked diffuse loss uptake in the left foot in keeping with active bone of bone density with marginal accentuation but no turnover as occurs with metastases. There is also slight localized bone loss to indicate bone destruction of any of increased isotope uptake at the left greater tuberosity of the tarsal bones. the femur. DIAGNOSTIC IMAGES 175 Postgrad Med J: first published as 10.1136/pgmj.67.784.174 on 1 February 1991. Downloaded from Comment The appearances of proximal tarsal osteopenia, a destructive or lytic lesion in the third metatarsal and diffuse sclerosis ofthe 2nd and 4th metatarsals associated with a minimal periosteal reaction could be due to osteomyelitis but there was no systemic or local evidence of infection.