Internexin Causes Abnormal Neurofilamentous Accumulations

Total Page:16

File Type:pdf, Size:1020Kb

Internexin Causes Abnormal Neurofilamentous Accumulations The Journal of Neuroscience, April 15, 1999, 19(8):2974–2986 Overexpression of a-Internexin Causes Abnormal Neurofilamentous Accumulations and Motor Coordination Deficits in Transgenic Mice Gee Y. Ching,1 Chung-Liang Chien,2 Roberto Flores,1 and Ronald K. H. Liem1 1Departments of Pathology and Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032, and 2Department of Anatomy, National Taiwan University School of Medicine, Taipei, Taiwan 100, Republic of China a-Internexin is the first neuronal intermediate filament (IF) pro- Behavioral tests demonstrate that these mice have a deficit in tein expressed in postmitotic neurons of the developing ner- motor coordination as early as 3 months of age, consistent with vous system. In the adult, its expression is restricted to mature the morphological neuronal changes. Our data further demon- neurons in the CNS. To study the potential role of a-internexin strate that the neurofilamentous inclusions also lead to progres- in neurodegeneration, we have generated transgenic mice that sive loss of neurons in the aged transgenic mice. The motor overexpress rat a-internexin. The total levels of a-internexin coordination deficit and the loss of neurons are transgene expressed in the hemizygous and homozygous transgenic mice dosage-dependent. These data yield direct evidence that high were ;2 and ;3 times the normal level, respectively. Overex- levels of misaccumulated neuronal IFs lead to neuronal dys- pression of a-internexin resulted in the formation of cerebellar function, progressive neurodegeneration, and ultimate loss of torpedoes as early as 1 month of age. These torpedoes are neurons. Moreover, the degrees of neuronal dysfunction and abnormal swellings of Purkinje cell axons that are usually seen degeneration are proportional to the levels of misaccumulated in neurodegenerative diseases involving the cerebellum. EM neuronal IFs. studies showed accumulations of high levels of IFs and abnor- mal organelles in the torpedoes and soma of Purkinje cells, as Key words: a-internexin; neurofilament; intermediate fila- well as in the large pyramidal neurons of the neocortex and in ment; neurodegeneration; cytoskeleton; transgenic mice; motor the ventral anterior and posteromedial nuclei of the thalamus. deficits a-Internexin is a neuronal intermediate filament (IF) protein that son’s disease (Munoz et al., 1988; Sasaki et al., 1989; Galloway et is expressed earlier and more abundantly than the neurofilament al., 1992; Trojanowski and Lee, 1994). Recent transgenic mouse triplet proteins (NFTPs) throughout the developing CNS (for models have shown that overexpression of human NF-H (Cote et review, see Fliegner and Liem, 1991). As development continues, al., 1993) or mouse NF-L (Xu et al., 1993) results in axonal the levels of a-internexin decrease, whereas those of the NFTPs swellings and perikaryal accumulation of neuronal IFs in motor increase (Kaplan et al., 1990; Fliegner et al., 1994). In adult CNS, neurons, as well as skeletal muscle atrophy. The mice develop a-internexin is colocalized with the NFTPs in most axons, but is signs of muscle weakness and reduced kinetic activity, reminis- present at lower levels in large neurons and is found in cerebellar cent of those found in ALS. Transgenic mice expressing a point granule cells, which lack the NFTPs (Kaplan et al., 1990). mutant of NF-L show neuronal abnormalities resulting in motor a-Internexin can self-assemble and coassemble with each of the neuron death and skeletal muscle atrophy (Lee et al., 1994). NFTPs into filaments, whereas the NFTPs are obligate hetero- NF-H mutations have also been found in sporadic ALS patients polymers (Ching and Liem, 1993, 1998; Lee et al., 1993). These (Figlewicz et al., 1994). a properties suggest that -internexin may play a role in stabilizing Overexpression of wild-type or mutant NFTPs does not always small-diameter axons and act as a scaffold on which the NFTPs result in ALS-like phenotypes. Transgenic mice that express a coassemble during development. NF-H/b-galactosidase fusion protein show perikaryal accumula- Abnormal accumulations of neuronal IFs are pathological hall- tions of IFs in their motor neurons but do not develop motor marks of many neurodegenerative diseases, such as amyotrophic neuron degeneration (Eyer and Peterson, 1994). The animals lateral sclerosis (ALS), Lewy body-type dementias, and Parkin- begin to show tremors and selective Purkinje cell loss only at 1 year of age (Tu et al., 1997). Their Purkinje cells contain Lewy Received Nov. 9, 1998; revised Jan. 28, 1999; accepted Jan. 28, 1999. body-like inclusions. Transgenic mice that express wild-type hu- This work was supported by Grant NS15182 from the National Institutes of man NF-M have normal motor neurons in the spinal cord and Health. C.-L. Chien was supported by Grant NSC 88-2314-B-002-119 from National exhibit perikaryal accumulations of neurofilaments in other neu- Science Council, Taiwan. We thank Dr. Frank Costantini and Ms. Xiao-lin Liang for generation of transgenic mouse founders, Dr. Mary Bach for helpful advice on the rons at 12, but not 3, months of age (Vickers et al., 1994). behavioral experiments, Ms. Beth Rosen and Mr. Reilly Coch for their excellent Surprisingly, transgenic mice that overexpress wild-type mouse technical assistance, Mr. Adam Nguyen and Ms. Allie Lui for assistance in DNA extraction and tissue sectioning, and Drs. Dongming Sun and Conrad Leung for NF-H or NF-M show neither muscle atrophy nor motor neuron their help in photographic printing. loss, despite prominent axonal swellings and perikaryal neurofila- Correspondence should be addressed to Dr. Ronald Liem, Department of Pathol- mentous accumulations in motor neurons (Wong et al., 1995; ogy, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032. Marszalek et al., 1996). Copyright © 1999 Society for Neuroscience 0270-6474/99/192974-13$05.00/0 Thus, overexpressions of different NFTPs have differential Ching et al. • a-Internexin-Overexpressing Mice with Motor Deficits J. Neurosci., April 15, 1999, 19(8):2974–2986 2975 effects on neurons. Because a-internexin differs from the NFTPs precipitated protein obtained after dialysis was solubilized by boiling in assembly properties and expression pattern, its overexpression briefly in 10 mM Tris-HCl, pH 7.5, containing 1% SDS. For immuniza- tion, the purified antigen (100 mg/immunization) was mixed with 0.2 ml may cause a different type of neuropathy and provide additional saline containing 25 mg of monophosphoryl lipid A plus synthetic treha- insights into mechanisms of neuronal dysfunction and neurode- lose dicorynomycolate emulsion (Ribi Immunochem Research), an ad- generation. Our present study shows that subpopulations of CNS juvant, and injected subcutaneously in two sites on Balb/c mice. Booster neurons appear to be relatively more vulnerable to filamentous injections were given every 3 weeks. Two weeks after the last antigen/ misaccumulations induced by a-internexin overexpression. More- adjuvant injection, another boost was given without adjuvant. Three days later, spleen cells were removed from the immunized mice for fusion over, the transgenic mice show a transgene dosage-dependent with NS-1 myeloma cells, and monoclonal antibodies were produced deficit in motor coordination. according to the method of Kohler and Milstein (1976). After immuno- blotting and immunohistochemical screening, two monoclonal antibod- MATERIALS AND METHODS ies, mAba12 and mAba3G10, were isolated. mAba12 recognizes only rat a-internexin, and mAba3G10 reacts with both mouse and rat Generation of transgenic mice. To obtain a full-length rat a-internexin a-internexin. genomic clone, a 6.4 kb BamHI–XhoI fragment and a 14.5 kb XhoI Antibodies. The following antibodies were obtained commercially (Sig- fragment, isolated from the rat a-internexin genomic clones laG-1 and ma, St. Louis, MO): mouse monoclonal antibodies to NF-L, NF-M, and laG-2 (Ching and Liem, 1991), respectively, were ligated to the BamHI– NF-H (clones NR4, NN18, and N52, respectively); SMI31 and SMI36, SalI digested lDashII phage vector (Stratagene, La Jolla, CA). The which detect the phosphorylated epitopes on NF-M and NF-H; SMI32, resulting genomic clone was designated laD-1. The transgene construct which recognizes the dephosphorylated forms of NF-M and NF-H; and pSP72N-aES16K was cloned by ligating the 13 kb EcoRI fragment from tau-2, which detects both phosphorylated and dephosphorylated forms of laD-1 and the 3.5 kb EcoRI–SalI fragment from laG-2 together with the tau. Rabbit polyclonal antibody to calbindin 28 kDa was purchased EcoRI–SalI digested pSP72N plasmid vector, which was modified from (Swant, Bellinzona, Switzerland). Rabbit polyclonal antibody to GFAP pSP72 (Promega, Madison, WI) by changing the EcoRV cloning site to a was previously described (Wang et al., 1984). NotI site. To obtain the transgene fragment for generation of transgenic Western blot analysis. M mice, the 16.5 kb NotI–SalI fragment from pSP72N-aES16K, consisting Mouse tissues were homogenized in 10 m a 9 Tris-HCl, pH 7.5, and 1% SDS, boiled for 5 min, and then centrifuged at of the entire rat -internexin gene with 1.2 kb of its 5 flanking sequence 3 and 3.5 kb of its 39 flanking sequence, was isolated from agarose gels and 13,000 g for 5 min to remove insoluble materials. The resulting purified by glass powder. The resulting 16.5 kb transgene fragment was supernatant contained total proteins extracted from the tissues. Protein further purified by Sephadex G50 spin columns (Boehringer Mannheim, concentrations were determined by Bradford assay (Bradford, 1976). Equal amounts of proteins were electrophoresed in 8 or 10% Indianapolis, IN) and prepared at 3 mg/ml in the 10 mM Tris-HCl, pH polyacrylamide-SDS gels (Laemmli, 1970) and then electrotransferred to 7.4, 10 mM NaCl, and 0.2 mM EDTA buffer. Transgenic mouse founders were generated by microinjecting the transgene fragment into fertilized nitrocellulose filters (Towbin et al., 1979).
Recommended publications
  • Blood Neurofilament Light Chain: the Neurologist's Troponin?
    biomedicines Review Blood Neurofilament Light Chain: The Neurologist’s Troponin? Simon Thebault 1,*, Ronald A. Booth 2 and Mark S. Freedman 1,* 1 Department of Medicine and the Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON K1H8L6, Canada 2 Department of Pathology and Laboratory Medicine, Eastern Ontario Regional Laboratory Association and Ottawa Hospital Research Institute, University of Ottawa & The Ottawa Hospital, Ottawa, ON K1H8L6, Canada; [email protected] * Correspondence: [email protected] (S.T.); [email protected] (M.S.F.) Received: 4 November 2020; Accepted: 18 November 2020; Published: 21 November 2020 Abstract: Blood neurofilament light chain (NfL) is a marker of neuro-axonal injury showing promising associations with outcomes of interest in several neurological conditions. Although initially discovered and investigated in the cerebrospinal fluid (CSF), the recent development of ultrasensitive digital immunoassay technologies has enabled reliable detection in serum/plasma, obviating the need for invasive lumbar punctures for longitudinal assessment. The most evidence for utility relates to multiple sclerosis (MS) where it serves as an objective measure of both the inflammatory and degenerative pathologies that characterise this disease. In this review, we summarise the physiology and pathophysiology of neurofilaments before focusing on the technological advancements that have enabled reliable quantification of NfL in blood. As the test case for clinical translation, we then highlight important recent developments linking blood NfL levels to outcomes in MS and the next steps to be overcome before this test is adopted on a routine clinical basis. Keywords: neurofilament light chain; biomarkers; multiple sclerosis 1. Neurofilament Structure and Function Neurofilaments are neuronal-specific heteropolymers conventionally considered to consist of a triplet of light (NfL), medium (NfM) and heavy (NfH) chains according to their molecular mass [1].
    [Show full text]
  • Differential Expression of Two Neuronal Intermediate-Filament Proteins, Peripherin and the Low-Molecular-Mass Neurofilament Prot
    The Journal of Neuroscience, March 1990, fO(3): 764-764 Differential Expression of Two Neuronal Intermediate-Filament Proteins, Peripherin and the Low-Molecular-Mass Neurofilament Protein (NF-L), During the Development of the Rat Michel Escurat,’ Karima Djabali,’ Madeleine Gumpel,2 Franqois Gras,’ and Marie-Madeleine Portier’ lCollBne de France, Biochimie Cellulaire, 75231 Paris Cedex 05, France, *HBpital de la Salpktricke, Unite INSERM 134, 75651Paris Cedex 13, France The expression of peripherin, an intermediate filament pro- and Freeman, 1978), now more generally referred to respectively tein, had been shown by biochemical methods to be local- as high-, middle-, and low-molecular-mass NFP (NF-H, NF-M, ized in the neurons of the PNS. Using immunohistochemical and NF-L). These proteins are expressed in most mature neu- methods, we analyzed this expression more extensively dur- ronal populations belonging either to the CNS or to the PNS; ing the development of the rat and compared it with that of developing neurons generally do not express any of them until the low-molecular-mass neurofilament protein (NF-L), which they become postmitotic (Tapscott et al., 198 la). is expressed in every neuron of the CNS and PNS. We, however, described another IFP with a molecular weight The immunoreactivity of NF-L is first apparent at the 25 of about 57 kDa, which we had first observed in mouse neu- somite stage (about 11 d) in the ventral horn of the spinal roblastoma cell lines and which was also expressed in rat pheo- medulla and in the posterior part of the rhombencephalon. chromocytoma PC1 2 cell line.
    [Show full text]
  • Wieslab Request Form - Neurology Neurology SEND TO: Wieslab AB CONTACT T +46 (0)40 - 53 76 60 P.O
    Wieslab Request Form - Neurology Neurology SEND TO: Wieslab AB CONTACT T +46 (0)40 - 53 76 60 P.O. Box 50117, SE-202 11 Malmö, Sweden [email protected] F +46 (0)40 - 43 28 90 REQUESTING DOCTOR/CLINIC BILL TO / INVOICE ADDRESS PATIENT DATA Postal address for test result report Only doctors, laboratories and hospital Full name: administration can be invoiced Birth date, Identity number: GENDER Man Woman Other SAMPLING DATE REFERENCE NUMBER / SAMPLING MATERIAL Serum CSF EDTA-Plasma EDTA-Whole blood COST CENTER REQUESTING DOCTOR SPECIMEN COLLECTION INFORMATION • For autoantibody assays, blood should be collected in plain tubes (serum tubes) without additives. Name: • 3 mL serum after centrifuging 7 mL blood (1300-1800g for 10 min) is enough for approx. 15 tests. • Keep samples cold until transport. Transport samples at room temperature by ordinary mail or with cold packs if long transportation (>24h). Email: • 3 mL CSF should be collected and transported in polypropylene tubes; enough for approx. 10 tests. • 2,5 mL EDTA-whole blood is needed for HLA determination. Phone: • 0,5 mL CSF is needed for each biomarker (transport frozen). • For more information about sampling please see: www.wieslab.com/diagnostic-services/sampling Comments (Patient history etc.) The healthcare provider submitting the sample(s) with this request form hereby confirms that the patient (or the patient’s guardian or trustee, if applicable) has been informed that the samples may be retained by Wieslab AB for a period of up to 5 years for the purpose of conducting further analyses in order to make a diagnosis, and that Wieslab AB intends to retain samples for a period of up to 5 years for the purpose of the Svar Life Science AB/Wieslab AB’s future development of analysis methods and its business activities.
    [Show full text]
  • Immunological Properties and Cdna Sequence Analysis of an Intermediate-filament-Like Protein from Squid Neuronal Tissue
    Journal of Cell Science 106, 1283-1290 (1993) 1283 Printed in Great Britain © The Company of Biologists Limited 1993 Immunological properties and cDNA sequence analysis of an intermediate-filament-like protein from squid neuronal tissue James Adjaye*, Philip J. Marsh and Peter A. M. Eagles† Department of Molecular Biology and Biophysics, The Randall Institute, King’s College London, 26-29 Drury Lane, London WC2B 5RL, UK *Present address: Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, PO Box 2841, D-3400, Goettingen, FRG †Author for correspondence SUMMARY A cDNA library has been constructed in the expression (IF) proteins. The rod has the classical heptad repeats vector gt11 from mRNA isolated from squid (Loligo indicating coiled-coil-forming ability, and the predicted forbesi) optic lobes. The library was screened with anti- lengths of the coils are similar to coils 1a, 1b and 2 of bodies generated against purified squid neurofilaments. intermediate filaments. At the C-terminal end of the rod A positive clone was isolated, which harboured a gt11 there is a strongly conserved IF epitope, and a fusion recombinant having an insert size of 3.5 kb. Hybridiz- protein containing SNLK is recognised by the pan- ation analysis by Southern and northern blotting specific intermediate filament antibody, IFA. A poly- showed that the corresponding protein is encoded by a clonal antibody raised against SNLK has been used to single gene that gives rise to a transcript of 2.6 kb. show that the protein is present only in neuronal tissues Translation of the full nucleotide sequence of the gene and that it is immunologically related to neurofilaments revealed an open reading frame covering 557 amino from Myxicola but not from mammals.
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Expression of Neurofilament Subunits in Neurons of the Central and Peripheral Nervous System: an Lmmunohistochemical Study with Monoclonal Antibodies
    The Journal of Neuroscience March 1986, 6(3): 650-660 Expression of Neurofilament Subunits in Neurons of the Central and Peripheral Nervous System: An lmmunohistochemical Study with Monoclonal Antibodies J. Q. Trojanowski, N. Walkenstein, and V. M.-Y. Lee The Division of Neuropathology, Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 The extent to which all neurofilament (NF) subunits (NF68, 1983; Shaw et al., 1981). For example, Sharp et al. (1982) were NF150, NF200) are expressed by different populations of ma- able to distinguish two classesof neurons in PNS gangliabased ture CNS and PNS neurons is controversial. We addressed this on the presenceor absenceof NF proteins. issue in immunohistochemical studies of mature bovine tissues The absenceof one or more NF subunits in some neurons using monoclonal antibodies specific for each bovine NF sub- would necessitatedifferent hypothesesconcerning the structure unit. and function of NFs. Alternatively, microheterogeneityamong All three NF subunits were detected in the perikarya and NF proteins due to the phosphorylation state of thesepolypep- neurites of both CNS and PNS neurons; they were seen in near- tides, or as a consequenceof unknown mechanisms,may ac- ly all PNS neuronal perikarya, and in all identifiable CNS and count for the apparent variable expressionof theseproteins in PNS axons. Most, but not all, CNS neuronal perikarya con- neurons(Goldstein et al., 1983; Nixon et al., 1982; Sternberger tained each of these NF antigens. CNS neurons devoid of im- and Sternberger, 1983). Other explanations, such as limitations munodetectable NF antigens were generally small. The pres- in the methods used to identify NF subunits in situ, are also ence of low levels of NF antigens in neurons with scant perikaryal possible(Hickey et al., 1983).
    [Show full text]
  • Intermediate Filament Accumulation Can Stabilize Microtubules in Caenorhabditis Elegans Motor Neurons
    Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons Naina Kurupa, Yunbo Lia, Alexandr Goncharova, and Yishi Jina,b,1 aNeurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; and bDepartment of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Edited by H. Robert Horvitz, Massachusetts Institute of Technology, Cambridge, MA, and approved February 11, 2018 (received for review December 21, 2017) Neural circuits utilize a coordinated cellular machinery to form and Results eliminate synaptic connections, with the neuronal cytoskeleton Identification of IF Genes That Regulate Synapse Rewiring. At the playing a prominent role. During larval development of Caenorhabditis end of larval stage 1 (L1), the dorsal D (DD)-type motor neurons elegans, synapses of motor neurons are stereotypically rewired rewire their presynaptic connections from the ventral nerve cord through a process facilitated by dynamic microtubules (MTs). Through a (VNC) to the dorsal nerve cord (DNC), concurrent with the genetic suppressor screen on mutant animals that fail to rewire synap- birth of ventral D (VD)-type motor neurons, which then form ses, and in combination with live imaging and ultrastructural studies, synapses along the VNC (19). We visualized DD-neuron pre- we find that intermediate filaments (IFs) stabilize MTs to prevent syn- synaptic terminals using a GFP-tagged synaptobrevin (SNB- apse rewiring. Genetic ablation of IFs or pharmacological disruption of 1::GFP) reporter (juIs137:Pflp-13 SNB-1::GFP). In L1 animals, IF networks restores MT growth and rescues synapse rewiring defects discrete synaptic puncta were present along the ventral neurites in the mutant animals, indicating that IF accumulation directly alters MT (18), but in late larvae and adults, synaptic puncta were only seen stability.
    [Show full text]
  • Formation of Hirano Bodies in Cell Culture 1941
    Research Article 1939 Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin-crosslinking protein Andrew G. Maselli, Richard Davis, Ruth Furukawa and Marcus Fechheimer* Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA *Author for correspondence (e-mail: [email protected]) Accepted 26 February 2002 Journal of Cell Science 115, 1939-1952 (2002) © The Company of Biologists Ltd Summary We report the serendipitous development of the first pathological conditions. Furthermore, expression of the cultured cell models of Hirano bodies. Myc-epitope-tagged CT fragment in murine L cells results in F-actin forms of the 34 kDa actin bundling protein (amino acids 1- rearrangements characterized by loss of stress fibers, 295) and the CT fragment (amino acids 124-295) of the 34 accumulation of numerous punctate foci, and large kDa protein that exhibits activated actin binding and perinuclear aggregates, the Hirano bodies. Thus, failure to calcium-insensitive actin filament crosslinking activity regulate the activity and/or affinity of an actin crosslinking were expressed in Dictyostelium and mammalian cells to protein can provide a signal for formation of Hirano bodies. assess the behavior of these modified forms in vivo. More generally, formation of Hirano bodies is a cellular Dictyostelium cells expressing the CT-myc fragment: (1) response to or a consequence of aberrant function of the form ellipsoidal regions that contain ordered assemblies of actin cytoskeleton. The results reveal that formation of F-actin, CT-myc, myosin II, cofilin and α-actinin; (2) grow Hirano bodies is not necessarily related to cell death.
    [Show full text]
  • Attenuated Neurodegenerative Disease Phenotype in Tau Transgenic Mouse Lacking Neurofilaments
    The Journal of Neuroscience, August 15, 2001, 21(16):6026–6035 Attenuated Neurodegenerative Disease Phenotype in Tau Transgenic Mouse Lacking Neurofilaments Takeshi Ishihara, Makoto Higuchi, Bin Zhang, Yasumasa Yoshiyama, Ming Hong, John Q. Trojanowski, and Virginia M.-Y. Lee Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 Previous studies have shown that transgenic (Tg) mice overex- particular NFL, resulted in a dramatic decrease in the total pressing human tau protein develop filamentous tau aggre- number of tau-positive spheroids in spinal cord and brainstem. gates in the CNS. The most abundant tau aggregates are found Concomitant with the reduction in spheroid number, the bigenic in spinal cord and brainstem in which they colocalize with mice showed delayed accumulation of insoluble tau protein in neurofilaments (NFs) as spheroids in axons. To elucidate the the CNS, increased viability, reduced weight loss, and improved role of NF subunit proteins in tau aggregate formation and to behavioral phenotype when compared with the single T44 Tg test the hypothesis that NFs are pathological chaperones in the mice. These results imply that NFs are pathological chaperones formation of intraneuronal tau inclusions, we crossbred previ- in the development of tau spheroids and suggest a role for NFs ously described tau (T44) Tg mice overexpressing the smallest in the pathogenesis of neurofibrillary tau lesions in neurodegen-
    [Show full text]
  • Neurofilaments and Neurofilament Proteins in Health and Disease
    Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Neurofilaments and Neurofilament Proteins in Health and Disease Aidong Yuan,1,2 Mala V. Rao,1,2 Veeranna,1,2 and Ralph A. Nixon1,2,3 1Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962 2Department of Psychiatry, New York University School of Medicine, New York, New York 10016 3Cell Biology, New York University School of Medicine, New York, New York 10016 Correspondence: [email protected], [email protected] SUMMARY Neurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neuro- filament middle]; NF-H [neurofilament heavy]; and a-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expan- sion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons exten- sively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionallyspecialized networkthat undergoes exceptionallyslow local turnoverand serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskel- eton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon.
    [Show full text]
  • Neurofilament Light Chain (Nfl) Levels Predict Functional Improvement in the Late Phase After Stroke
    cells Review Neurofilament Light Chain (NfL) in Blood—A Biomarker Predicting Unfavourable Outcome in the Acute Phase and Improvement in the Late Phase after Stroke Milos Pekny 1,2,3,*, Ulrika Wilhelmsson 1, Anna Stokowska 4, Turgut Tatlisumak 5,6, Katarina Jood 5,6 and Marcela Pekna 2,3,4 1 Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; [email protected] 2 Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia 3 School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia 4 Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; [email protected] (A.S.); [email protected] (M.P.) 5 The Stroke Research Center, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; [email protected] (T.T.); [email protected] (K.J.) 6 Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden * Correspondence: [email protected]; Tel.: +46-31-786-3269 Citation: Pekny, M.; Wilhelmsson, U.; Abstract: Increased sensitivity of methods assessing the levels of neurofilament light chain (NfL), Stokowska, A.; Tatlisumak, T.; Jood, a neuron-specific intermediate filament protein, in human plasma or serum, has in recent years K.; Pekna, M. Neurofilament Light led to a number of studies addressing the utility of monitoring NfL in the blood of stroke patients.
    [Show full text]
  • Molecular Cloning, Expression, and Protein Interaction of Avian Muscle Titin Kuan Onn Tan Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1993 Molecular cloning, expression, and protein interaction of avian muscle titin Kuan Onn Tan Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Tan, Kuan Onn, "Molecular cloning, expression, and protein interaction of avian muscle titin " (1993). Retrospective Theses and Dissertations. 10555. https://lib.dr.iastate.edu/rtd/10555 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. U'M'I MICROFILMED 1994 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]