A&A 541, A81 (2012) Astronomy DOI: 10.1051/0004-6361/201218932 & c ESO 2012 Astrophysics Kalman-filter control schemes for fringe tracking Development and application to VLTI/GRAVITY J. Menu1,2,3,, G. Perrin1,3, E. Choquet1,3, and S. Lacour1,3 1 LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, Paris Sciences et Lettres, 5 place Jules Janssen, 92195 Meudon, France 2 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium e-mail:
[email protected] 3 Groupement d’Intérêt Scientifique PHASE (Partenariat Haute résolution Angulaire Sol Espace) between ONERA, Observatoire de Paris, CNRS and Université Paris Diderot, France Received 31 January 2012 / Accepted 28 February 2012 ABSTRACT Context. The implementation of fringe tracking for optical interferometers is inevitable when optimal exploitation of the instrumental capacities is desired. Fringe tracking allows continuous fringe observation, considerably increasing the sensitivity of the interfero- metric system. In addition to the correction of atmospheric path-length differences, a decent control algorithm should correct for disturbances introduced by instrumental vibrations, and deal with other errors propagating in the optical trains. Aims. In an effort to improve upon existing fringe-tracking control, especially with respect to vibrations, we attempt to construct con- trol schemes based on Kalman filters. Kalman filtering is an optimal data processing algorithm for tracking and correcting a system on which observations are performed. As a direct application, control schemes are designed for GRAVITY, a future four-telescope near-infrared beam combiner for the Very Large Telescope Interferometer (VLTI). Methods. We base our study on recent work in adaptive-optics control.