Organic Information Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Experience Design to Drive Institutional Change, by Matt Glendinning
The Monthly Recharge - November 2014, Experience Design Designing Learning for School Leaders, by Carla Silver Using Experience Design to Drive Institutional Change, by Matt Glendinning Designing the Future, by Brett Jacobsen About L+D Designing Learning for School Leadership+Design is a nonprofit Leaders organization and educational Carla Robbins Silver, Executive Director collaborative dedicated to creating a new culture of school leaders - empathetic, creative, collaborative Dear Friends AND Designers: and adaptable solution-makers who can make a positive difference in a The design industry is vast and wonderful. In his book, Design: rapidly changing world. Creation of Artifacts in Society, Karl Ulrich, professor at Wharton School of Business at the University of Pennsylvania, includes an We support creative and ever-growing list of careers and opportunities in design. They innovative school leadership at range form the more traditional and known careers - architecture the individual and design, product design, fashion design, interior design - to organizational level. possibilities that might surprise you - game design, food design, We serve school leaders at all news design, lighting and sound design, information design and points in their careers - from experience design. Whenever I read this list, I get excited - like teacher leaders to heads of jump-out-of-my-seat excited. I think about the children in all of our school as well as student schools solving complex problems, and I think about my own leaders. children, and imagine them pursuing these careers as designers. We help schools design strategies for change, growth, Design is, according to Ulrich, "conceiving and giving form to and innovation. -
Transformational Information Design 35
Petra Černe Oven & Cvetka Požar (eds.) ON INFORMATION DESIGN Edited by Petra Černe Oven and Cvetka Požar Ljubljana 2016 On Information Design Edited by Petra Černe Oven and Cvetka Požar AML Contemporary Publications Series 8 Published by The Museum of Architecture and Design [email protected], www.mao.si For the Museum of Architecture and Design Matevž Čelik In collaboration with The Pekinpah Association [email protected], www.pekinpah.org For the Pekinpah Association Žiga Predan © 2016 The Museum of Architecture and Design and authors. All rights reserved. Photos and visual material: the authors and the Museum for Social and Economic Affairs (Gesellschafts- und Wirtschaftsmuseum), Vienna English copyediting: Rawley Grau Design: Petra Černe Oven Typefaces used: Vitesse and Mercury Text G2 (both Hoefler & Frere-Jones) are part of the corporate identity of the Museum of Architecture and Design. CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 7.05:659.2(082)(0.034.2) ON information design [Elektronski vir] / Engelhardt ... [et al.] ; edited by Petra Černe Oven and Cvetka Požar ; [photographs authors and Austrian Museum for Social and Economic Affairs, Vienna]. - El. knjiga. - Ljubljana : The Museum of Architecture and Design : Društvo Pekinpah, 2016. - (AML contemporary publications series ; 8) ISBN 978-961-6669-26-9 (The Museum of Architecture and Design, pdf) 1. Engelhardt, Yuri 2. Černe Oven, Petra 270207232 Contents Petra Černe Oven Introduction: Design as a Response to People’s Needs (and Not People’s Needs -
Information Scaffolding: Application to Technical Animation by Catherine
Information Scaffolding: Application to Technical Animation By Catherine Claire Newman a dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENGINEERING – MECHANICAL ENGINEERING in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA, BERKELEY Committee in Charge: Professor Alice Agogino, Chair Professor Dennis K Lieu Professor Michael Buckland FALL, 2010 Information Scaffolding: Application to Technical Animation Copyright © 2010 Catherine Newman i if you can help someone turn information into knowledge, if you can help them make sense of the world, you win. --- john battelle ii Abstract Information Scaffolding: Application to Technical Animation by Catherine C. Newman Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Alice Agogino, Chair Information Scaffolding is a user-centered approach to information design; a method devised to aid “everyday” authors in information composition. Information Scaffolding places a premium on audience-centered documents by emphasizing the information needs and motivations of a multimedia document's intended audience. The aim of this method is to structure information in such a way that an intended audience can gain a fuller understanding of the information presented and is able to incorporate knowledge for future use. Information Scaffolding looks to strengthen the quality of a document’s impact both on the individual and on the broader, ongoing disciplinary discussion, by better couching a document’s contents in a manner relevant to the user. Thus far, instructional research design has presented varying suggested guidelines for the design of multimedia instructional materials (technical animations, dynamic computer simulations, etc.), primarily do’s and don’ts. -
Tamara Munzner Department of Computer Science University of British Columbia
Ch 3: Task Abstraction Paper: Design Study Methodology Tamara Munzner Department of Computer Science University of British Columbia CPSC 547, Information Visualization Day 4: 22 September 2015 http://www.cs.ubc.ca/~tmm/courses/547-15 News • headcount update: 29 registered; 24 Q2, 22 Q3 – signup sheet: anyone here for the first time? • marks for day 2 and day 3 questions/comments sent out by email – see me after class if you didn’t get them – order of marks matches order of questions in email • Q2: avg 83.9, min 26, max 98 • Q3: avg 84.3, min 22, max 98 – if you spot typo in book, let me know if it’s not already in errata list • http://www.cs.ubc.ca/~tmm/vadbook/errata.html • but don’t count it as a question • not useful to tell me about typos in published papers – three questions total required • not three questions per reading (6 total)! not just one! 2 VAD Ch 3: Task Abstraction Why? Actions Targets Analyze All Data Consume Trends Outliers Features Discover Present Enjoy Attributes Produce Annotate Record Derive One Many tag Distribution Dependency Correlation Similarity Extremes Search Target known Target unknown Location Lookup Browse Network Data known Location Locate Explore Topology unknown Query Paths Identify Compare Summarize What? Spatial Data Why? Shape How? [VAD Fig 3.1] 3 High-level actions: Analyze • consume Analyze –discover vs present Consume Discover Present Enjoy • classic split • aka explore vs explain –enjoy • newcomer Produce • aka casual, social Annotate Record Derive tag • produce –annotate, record –derive • crucial -
Leaks, Sabotage, and Information Design∗
Leaks, Sabotage, and Information Design∗ Aaron Kolby Erik Madsenz February 2, 2019 Abstract We study optimal dynamic information disclosure by a principal to an agent of uncer- tain loyalty who may engage in hidden undermining, for instance through damaging leaks or sabotage. The agent requires information to correctly perform a task but may also covertly commit destructive acts which are only stochastically detectable. The principal optimally provides inconclusive incremental guidance until a deterministic time when the agent is deemed trusted and given a conclusive final report. Disloyal agents are never given incentives to feign loyalty, and in the unique time-consistent implementation undermine with variable, non-monotonic intensity over the lifetime of employment. JEL Classification: C70, D82, D83, D86, M51 Keywords: information leaks, sabotage, principal-agent model, information design 1 Introduction An organization has found itself the victim of information leaks and sabotage. Sensitive documents have been leaked to the media, corporate secrets have been sold to competitors, obscure vulnerable points in production lines have been discovered and sabotaged. An insider with access to privileged information must be undermining the organization | but who? Halting the distribution of sensitive data would staunch the bleeding, but also leave employees paralyzed and unable to act effectively. Limited information could be circulated ∗The authors thank Laurent Mathevet and seminar audiences at Brown University and the 2018 NSF/NBER/CEME Conference at the University of Chicago for helpful conversations. yDepartment of Business Economics and Public Policy, Kelley School of Business, Indiana University (Email: [email protected]). zDepartment of Economics, New York University (Email: [email protected]). -
Tamara Munzner
The 2015 Visualization Technical Achievement Award Tamara Munzner The 2015 Visualization Technical Achievement Award goes to Tamara Munzner in recognition of foundational research that has produced a scientific basis for principles and design choices for visualization. The IEEE Visualization & Graphics Technical Community (VGTC) is pleased to award Tamara Munzner the 2015 Visualization Technical Achievement Award. Biography Tamara Munzner Tamara Munzner is a full professor at the University of University of British British Columbia Department of Computer Science, where Columbia she has been since 2002. She was a research scientist from Award Recipient 2015 2000 to 2002 at the Compaq Systems Research Center (the former DEC SRC). She earned her PhD from Stanford between 1995 and 2000, working with Pat Hanrahan. She and prescribe models and methods for visualization design holds a BS from Stanford from 1991, the year she first and the research process itself, including a nested model of attended VIS. design and validation and methodology for design studies. From 1991 to 1995, Tamara was a technical staff Her 2014 book Visualization Analysis and Design provides member at The Geometry Center, based at the University a systematic, comprehensive framework for thinking about of Minnesota. She was one of the architects and imple- visualization in terms of principles and design choices. It mentors of Geomview, the Center’s public domain interac- features a unified approach encompassing information visu- tive 3D visualization system that supported hyperbolic and alization techniques for the abstract data of tables and net- spherical geometry in addition to Euclidean geometry. She works, scientific visualization techniques for spatial data, was co-director and one of the animators of two videos and visual analytics techniques for interweaving data trans- that brought concepts from the cutting edge of geomet- formation and analysis with interactive visual exploration. -
Design-Build Manual
DISTRICT OF COLUMBIA DEPARTMENT OF TRANSPORTATION DESIGN BUILD MANUAL May 2014 DISTRICT OF COLUMBIA DEPARTMENT OF TRANSPORTATION MATTHEW BROWN - ACTING DIRECTOR MUHAMMED KHALID, P.E. – INTERIM CHIEF ENGINEER ACKNOWLEDGEMENTS M. ADIL RIZVI, P.E. RONALDO NICHOLSON, P.E. MUHAMMED KHALID, P.E. RAVINDRA GANVIR, P.E. SANJAY KUMAR, P.E. RICHARD KENNEY, P.E. KEITH FOXX, P.E. E.J. SIMIE, P.E. WASI KHAN, P.E. FEDERAL HIGHWAY ADMINISTRATION Design-Build Manual Table of Contents 1.0 Overview ...................................................................................................................... 1 1.1. Introduction .................................................................................................................................. 1 1.2. Authority and Applicability ........................................................................................................... 1 1.3. Future Changes and Revisions ...................................................................................................... 1 2.0 Project Delivery Methods .............................................................................................. 2 2.1. Design Bid Build ............................................................................................................................ 2 2.2. Design‐Build .................................................................................................................................. 3 2.3. Design‐Build Operate Maintain.................................................................................................... -
Improving Product Reliability
Improving Product Reliability Strategies and Implementation Mark A. Levin and Ted T. Kalal Teradyne, Inc., California, USA Improving Product Reliability Wiley Series in Quality and Reliability Engineering Editor Patrick D.T. O’Connor www.pat-oconnor.co.uk Electronic Component Reliability: Fundamentals, Modelling, Evaluation and Assurance Finn Jensen Integrated Circuit Failure Analysis: A Guide to Preparation Techniques Friedrich Beck Measurement & Calibration Requirements For Quality Assurance to ISO 9000 Alan S. Morris Accelerated Reliability Engineering: HALT and HASS Gregg K. Hobbs Test Engineering: A Concise Guide to Cost-effective Design, Development and Manufacture Patrick D.T. O’Connor Improving Product Reliability: Strategies and Implementation Mark Levin and Ted Kalal Improving Product Reliability Strategies and Implementation Mark A. Levin and Ted T. Kalal Teradyne, Inc., California, USA Copyright 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. -
Introduction to Information Visualization.Pdf
Introduction to Information Visualization Riccardo Mazza Introduction to Information Visualization 123 Riccardo Mazza University of Lugano Switzerland ISBN: 978-1-84800-218-0 e-ISBN: 978-1-84800-219-7 DOI: 10.1007/978-1-84800-219-7 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008942431 c Springer-Verlag London Limited 2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publish- ers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Printed on acid-free paper Springer Science+Business Media springer.com To Vincenzo and Giulia Preface Imagine having to make a car journey. Perhaps you’re going to a holiday resort that you’re not familiar with. -
Tamara Munzner Department of Computer Science University of British Columbia
Ch 1/2/3: Intro, Data, Tasks Paper: Design Study Methodology Tamara Munzner Department of Computer Science University of British Columbia CPSC 547, Information Visualization Week 2: 17 September 2019 http://www.cs.ubc.ca/~tmm/courses/547-19 News • Signup sheet round 2: check column (or add yourself) • Canvas comments/question discussion –one question/comment per reading required • everybody got this right, great! –responses to others required • a few of you did not do this • original requirement of 2, considering cutback to just 1: discuss • decision: cut back to just 1 –if you spot typo in book, let me know if it’s not already in errata list • http://www.cs.ubc.ca/~tmm/vadbook/errata.html • (but don’t count it as a question) • not useful to tell me about typos in published papers 2 Ch 1. What’s Vis, and Why Do It? 3 Why have a human in the loop? Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively. Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods. • don’t need vis when fully automatic solution exists and is trusted • many analysis problems ill-specified – don’t know exactly what questions to ask in advance • possibilities – long-term use for end users (e.g. exploratory analysis of scientific data) – presentation of known results – stepping stone to better understanding of requirements before developing models – help developers of automatic solution refine/debug, determine parameters – help end users of automatic solutions verify, build trust 4 Why use an external representation? Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively. -
Recent Advances in Engineering Design: Theory and Practice
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1994 Recent Advances in Engineering Design: Theory and Practice Andrew J. Moskalik Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Mechanical Engineering Commons Recommended Citation Moskalik, Andrew J., "Recent Advances in Engineering Design: Theory and Practice" (1994). Master's Theses. 805. https://scholarworks.wmich.edu/masters_theses/805 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. RECENT ADVANCES IN ENGINEERING DESIGN: THEORY AND PRACTICE by Andrew J. Moskalik A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Science Department of Mechanical and Aeronautical Engineering Western Michigan University Kalamazoo, Michigan June 1994 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RECENT ADVANCES IN ENGINEERING DESIGN: THEORY AND PRACTICE Andrew J. Moskalik, M.S. Western Michigan University, 1994 In the last few years, industry and academia have focused greater attention on the area of engineering design. Manufacturers have implemented new design methods such as concurrent engineering and design for manufacture, and academia has increased research in design-related issues. This paper will attempt to summarize the recent advances, both scholarly and industrial, relating to the field o f design. I will examine new methodologies and supporting tools for the design process, both in use and under research. -
3. Graphical Perception Tomorrow
Graphical Perception Nam Wook Kim Mini-Courses — January @ GSAS 2018 What is graphical perception? The visual decoding of information encoded on graphs Why important? “Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space” — Edward Tufte Goal Understand the role of perception in visualization design Topics • Signal Detection • Magnitude Estimation • Pre-Attentive Processing • Using Multiple Visual Encodings • Gestalt Grouping • Change Blindness Signal Detection Detecting Brightness A Which is brighter? B Detecting Brightness (128,128,128) (144,144,144) A B Detecting Brightness A Which is brighter? B Detecting Brightness (134,134,134) (138,138,138) A B Weber’s Law Just Noticeable Difference (JND) dS dp = k S Weber’s Law Just Noticeable Difference (JND) dS Change of Intensity dp = k S Physical Intensity Weber’s Law Just Noticeable Difference (JND) dS Change of Intensity Perceived Change dp = k S Physical Intensity Weber’s Law Just Noticeable Difference (JND) dS Change of Intensity Perceived Change dp = k S Physical Intensity Most continuous variation in stimuli are perceived in discrete steps Ranking correlation visualizations [Harrison et al 2014] Ranking correlation visualizations Which of the two appeared to be more highly correlated? A B [Harrison et al 2014] Ranking correlation visualizations Which of the two appeared to be more highly correlated? r = 0.7 r = 0.6 Ranking correlation visualizations Which of the two appeared to be more highly correlated? A B Ranking correlation visualizations Which of the two appeared to be more highly correlated? r = 0.7 r = 0.65 Ranking visualizations for depicting correlation Overall, scatterplots are the best for both positive and negative correlations.