Polychaete Community Structure and Biodiversity Change in Space and Time at the Abyssal Seafloor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annelida, Phyllodocida)
A peer-reviewed open-access journal ZooKeys 488: 1–29Guide (2015) and keys for the identification of Syllidae( Annelida, Phyllodocida)... 1 doi: 10.3897/zookeys.488.9061 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Guide and keys for the identification of Syllidae (Annelida, Phyllodocida) from the British Isles (reported and expected species) Guillermo San Martín1, Tim M. Worsfold2 1 Departamento de Biología (Zoología), Laboratorio de Biología Marina e Invertebrados, Facultad de Ciencias, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain 2 APEM Limited, Diamond Centre, Unit 7, Works Road, Letchworth Garden City, Hertfordshire SG6 1LW, UK Corresponding author: Guillermo San Martín ([email protected]) Academic editor: Chris Glasby | Received 3 December 2014 | Accepted 1 February 2015 | Published 19 March 2015 http://zoobank.org/E9FCFEEA-7C9C-44BF-AB4A-CEBECCBC2C17 Citation: San Martín G, Worsfold TM (2015) Guide and keys for the identification of Syllidae (Annelida, Phyllodocida) from the British Isles (reported and expected species). ZooKeys 488: 1–29. doi: 10.3897/zookeys.488.9061 Abstract In November 2012, a workshop was carried out on the taxonomy and systematics of the family Syllidae (Annelida: Phyllodocida) at the Dove Marine Laboratory, Cullercoats, Tynemouth, UK for the National Marine Biological Analytical Quality Control (NMBAQC) Scheme. Illustrated keys for subfamilies, genera and species found in British and Irish waters were provided for participants from the major national agencies and consultancies involved in benthic sample processing. After the workshop, we prepared updates to these keys, to include some additional species provided by participants, and some species reported from nearby areas. -
Development of a Multi-Trophic Level Metabarcoding Tool for Benthic Monitoring of Aquaculture Farms
REPORT NO. 2980 DEVELOPMENT OF A MULTI-TROPHIC LEVEL METABARCODING TOOL FOR BENTHIC MONITORING OF AQUACULTURE FARMS CAWTHRON INSTITUTE | REPORT NO. 2980 JANUARY 2017 DEVELOPMENT OF A MULTI-TROPHIC LEVEL METABARCODING TOOL FOR BENTHIC MONITORING OF AQUACULTURE FARMS XAVIER POCHON, NIGEL KEELEY, SUSIE WOOD Prepared for Seafood Innovation Limited Ltd, New Zealand King Salmon Ltd, Ngāi Tahu Seafood, the Ministry for Primary Industries, Waikato Regional Council, and the Marlborough District Council CAWTHRON INSTITUTE 98 Halifax Street East, Nelson 7010 | Private Bag 2, Nelson 7042 | New Zealand Ph. +64 3 548 2319 | Fax. +64 3 546 9464 www.cawthron.org.nz REVIEWED BY: APPROVED FOR RELEASE BY: Anastasija Zaiko Chris Cornelisen ISSUE DATE: 16 January 2017 RECOMMENDED CITATION: Pochon X, Keeley N, Wood S 2017. Development of a new molecular tool for biomonitoring New Zealand’s fish farms. Prepared for Seafood Innovation Limited Ltd, New Zealand King Salmon Ltd, Ngāi Tahu Seafood, the Ministry for Primary Industries, Waikato Regional Council, and the Marlborough District Council Cawthron Report No. 2980. 48 p. plus appendices. © COPYRIGHT This publication must not be reproduced or distributed, electronically or otherwise, in whole or in part without the written permission of the Copyright Holder, which is the party that commissioned the report. CAWTHRON INSTITUTE | REPORT NO. 2980 JANUARY 2017 EXECUTIVE SUMMARY The Cawthron Institute was commissioned by a range of private and government agencies and industry partners to develop a molecular-based tool for assessing benthic impacts associated with salmon farming practices in New Zealand. The analysis was undertaken using cutting-edge molecular techniques, with the view that over time these rapidly evolving techniques could be integrated into the current suite of assessment tools routinely used by industry partners and stakeholders. -
The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks. -
I. Introduction
Bathymetric distribution of the species .... 210 2. Penetration of species into the Bathymetric zonation of the deep sea ...... 210 Mediterranean deep sea ............. 235 Bathymetric distribution and taxonomic 3. Comparison with other groups ....... 235 relationship .......................... 214 Sediments and nutrient conditions ........ 235 Number of species and individuals in Hydrostatic pressure ..................... 237 relation to depth ...................... 217 Currents ............................... 238 Topography ............................ 238 E. Geographic distribution .................. 219 Conclusion ............................. 239 The exploration of the different geographic regions ............................... 219 G. The hadal fauna ........................ 239 The bathyal fauna ...................... 220 The hadal environment .................. 239 The abyssal fauna ....................... 221 General features of the hadal fauna ....... 240 1. World-wide distributions ............ 223 2. The Antarctic Ocean ................ 224 H. Evolutionary aspects .................... 243 3. The North Atlantic ................. 225 Evolution within the deep sea versus 4. The South Atlantic ................. 227 immigration from shallower depths .... 243 5. The Indian Ocean .................. 22; Geographic variation .................... 244 6. The Indonesian seas ................ 228 1. Clines ............................. 245 7. The Pacific Ocean .................. 231 2. Local variation ..................... 245 8. The Arctic -
The Namanereidinae (Polychaeta: Nereididae). Part 1, Taxonomy and Phylogeny
© Copyright Australian Museum, 1999 Records of the Australian Museum, Supplement 25 (1999). ISBN 0-7313-8856-9 The Namanereidinae (Polychaeta: Nereididae). Part 1, Taxonomy and Phylogeny CHRISTOPHER J. GLASBY National Institute for Water & Atmospheric Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand [email protected] ABSTRACT. A cladistic analysis and taxonomic revision of the Namanereidinae (Nereididae: Polychaeta) is presented. The cladistic analysis utilising 39 morphological characters (76 apomorphic states) yielded 10,000 minimal-length trees and a highly unresolved Strict Consensus tree. However, monophyly of the Namanereidinae is supported and two clades are identified: Namalycastis containing 18 species and Namanereis containing 15 species. The monospecific genus Lycastoides, represented by L. alticola Johnson, is too poorly known to be included in the analysis. Classification of the subfamily is modified to reflect the phylogeny. Thus, Namalycastis includes large-bodied species having four pairs of tentacular cirri; autapomorphies include the presence of short, subconical antennae and enlarged, flattened and leaf-like posterior cirrophores. Namanereis includes smaller-bodied species having three or four pairs of tentacular cirri; autapomorphies include the absence of dorsal cirrophores, absence of notosetae and a tripartite pygidium. Cryptonereis Gibbs, Lycastella Feuerborn, Lycastilla Solís-Weiss & Espinasa and Lycastopsis Augener become junior synonyms of Namanereis. Thirty-six species are described, including seven new species of Namalycastis (N. arista n.sp., N. borealis n.sp., N. elobeyensis n.sp., N. intermedia n.sp., N. macroplatis n.sp., N. multiseta n.sp., N. nicoleae n.sp.), four new species of Namanereis (N. minuta n.sp., N. serratis n.sp., N. stocki n.sp., N. -
The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
The lower bathyal and abyssal seafloor fauna of eastern Australia T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, D. Bray, I. Burghardt, N. Budaeva, F. Criscione, A. Crowther, et al. To cite this version: T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, et al.. The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records, Cambridge University Press, 2020, 13 (1), 10.1186/s41200-020-00194-1. hal-03090213 HAL Id: hal-03090213 https://hal.archives-ouvertes.fr/hal-03090213 Submitted on 29 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. -
Annelida, Serpulidae
Graellsia, 72(2): e053 julio-diciembre 2016 ISSN-L: 0367-5041 http://dx.doi.org/10.3989/graellsia.2016.v72.120 SERPÚLIDOS (ANNELIDA, SERPULIDAE) COLECTADOS EN LA CAMPAÑA OCEANOGRÁFICA “FAUNA II” Y CATÁLOGO ACTUALIZADO DE ESPECIES ÍBERO-BALEARES DE LA FAMILIA SERPULIDAE Jesús Alcázar* & Guillermo San Martín Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, calle Darwin, 2, Canto Blanco, 28049 Madrid, España. *Dirección para la correspondencia: [email protected] RESUMEN Se presentan los resultados de la identificación del material de la familia Serpulidae (Polychaeta) recolectado en la campaña oceanográfica Fauna II, así como la revisión de citas de presencia íbero-balear desde el catálogo de poliquetos más reciente (Ariño, 1987). Se identificaron 16 especies pertenecientes a 10 géneros, además de la primera cita íbero-balear de una quimera bioperculada (Ten Hove & Ben-Eliahu, 2005) de la especie Hydroides norvegicus Gunnerus, 1768. En cuanto a la revisión del catálogo se mencionan 65 especies, actuali- zando el nombre de 20 de ellas y añadiendo cinco especies ausentes en el catálogo de Ariño (1987): Hydroides stoichadon Zibrowius, 1971, Laeospira corallinae (de Silva & Knight-Jones, 1962), Serpula cavernicola Fassari & Mòllica, 1991, Spirobranchus lima (Grube, 1862) y Spirorbis inornatus L’Hardy & Quièvreux, 1962. Se cita por primera vez Vermiliopsis monodiscus Zibrowius, 1968 en el Atlántico ibérico y a partir de la bibliografía consultada, se muestra la expansión en la distribución íbero-balear -
Polychaete Worms Definitions and Keys to the Orders, Families and Genera
THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens. -
Ring Test Bulletin – RTB#48
www.nmbaqcs.org Ring Test Bulletin – RTB#48 Carol Milner David Hall Tim Worsfold Søren Pears (Images) APEM Ltd. February 2016 E-mail: [email protected] NMBAQC RT#48 bulletin RING TEST DETAILS Ring Test #48 Type/Contents – Targeted/Syllidae and similar Circulated – 18/12/2014 Completion Date – 06/02/2015 Number of Subscribing Laboratories – 21 Number of Participating Laboratories – 18 Number of Results Received – 18* *multiple data entries per laboratory permitted Summary of differences Total differences for 18 Specimen Genus Species returns Genus Species RT4801 Exogone naidina 2 4 RT4802 Sphaerosyllis bulbosa 2 4 RT4803 Syllidia armata 3 3 RT4804 Syllis c.f. armillaris 2 4 RT4805 Prosphaerosyllis c.f. tetralix 4 9 RT4806 Syllis garciai / mauretanica 0 5 RT4807 Syllis pontxioi / licheri 0 8 RT4808 Syllis gracilis 0 2 RT4809 Syllis c.f.armillaris 1 8 RT4810 Erinaceusyllis c.f. belizensis 7 17 RT4811 Streptosyllis websteri 3 4 RT4812 Parexogone hebes 1 2 RT4813 Plakosyllis brevipes 0 0 RT4814 Parapionosyllis c.f. macaronesiensis 4 15 RT4815 Prosphaerosyllis c.f. tetralix 4 12 RT4816 Sphaerosyllis bulbosa 2 4 RT4817 Plakosyllis brevipes 1 1 RT4818 Exogone verugera 1 2 RT4819 Odontosyllis ctenostoma 1 1 RT4820 Prosphaerosyllis chauseyensis 5 7 RT4821 Trypanosyllis coeliaca 0 0 RT4822 Syllis variegata / alternata 1 10 RT4823 Syllis variegata 1 6 RT4824 Sphaerosyllis c.f. taylori 3 11 RT4825 Exogone naidina 1 2 Total differences 49 141 Average differences/lab. 2.7 7.8 NMBAQC RT#48 bulletin 10 Differences 15 20 25 0 5 BI_2101 laboratories. Arranged inorder of increasing number of differences. Figure 1. -
The Patterns of Abundance and Relative Abundance of Benthic
AN ABSTRACT OF THE THESIS OF Robert Spencer Carney for the degree of Doctor of Philosophy in Oceanography presented on September 14, 1976 Title: PATTERNS OF ABUNDANCE AND RELATIVE ABUNDANCE OF BENTHIC HOLO- THURIANS (ECHINODERMATA:HOLOTHURIOIDEA) ON CASCADIA BASIN AND TUFT'S ABYSSAL PLAIN IN THE NORTHEAST PACIFIC OCEAN Abstract approved: Redacted for Privacy Dr. And r4 G. Jr. Cascadia Basin and the deeper Tuft's Abyssal Plain are inhabited by a common set of holothuroid species but differ markedly in propor- tional composition and apparent abundance. Seventy-six trawl samples were collected in a grid on Cascadia Basin. Depth appeared to be the major factor affecting the proportional composition of the dominant species. The fauna became progressively more uniform as the depth gra- dient decreased. The region adjacent to the base of the slope was distinct in its low diversity and low proportions of small specimens of the most common holothuroid species. These features might be due to in- creased competition and predation in that region. Sixteen trawl samples were examined from Tuft's Plain. Again the fauna appeared to be affected primarily by depth. While the abundance of holothuroids remained uniform across the flat Cascadia Basin, it appeared to decrease exponentially with depth across Tuft's Plain. The uniformity of proportional composition and abundance of the holothurian fauna across the floor of Cascadia Basin is in marked contrast with previously reported patterns of infaunal organisms. It is suggested that the differences reflect basic differences in the ecologies of the infauna and the motile epifauna, and that the size distribution of food material from overlying water may be of importance in determining the benthic fauna composition. -
Of Polychaetes (Annelida: Polychaeta) from the Atlantic and Mediterranean Coasts of the Iberian Peninsula: an Annotated Checklist E
López and Richter Helgol Mar Res (2017) 71:19 DOI 10.1186/s10152-017-0499-6 Helgoland Marine Research ORIGINAL ARTICLE Open Access Non‑indigenous species (NIS) of polychaetes (Annelida: Polychaeta) from the Atlantic and Mediterranean coasts of the Iberian Peninsula: an annotated checklist E. López* and A. Richter Abstract This study provides an updated catalogue of non-indigenous species (NIS) of polychaetes reported from the conti- nental coasts of the Iberian Peninsula based on the available literature. A list of 23 introduced species were regarded as established and other 11 were reported as casual, with 11 established and nine casual NIS in the Atlantic coast of the studied area and 14 established species and seven casual ones in the Mediterranean side. The most frequent way of transport was shipping (ballast water or hull fouling), which according to literature likely accounted for the intro- ductions of 14 established species and for the presence of another casual one. To a much lesser extent aquaculture (three established and two casual species) and bait importation (one established species) were also recorded, but for a large number of species the translocation pathway was unknown. About 25% of the reported NIS originated in the Warm Western Atlantic region, followed by the Tropical Indo West-Pacifc region (18%) and the Warm Eastern Atlantic (12%). In the Mediterranean coast of the Iberian Peninsula, nearly all the reported NIS originated from warm or tropi- cal regions, but less than half of the species recorded from the Atlantic side were native of these areas. The efects of these introductions in native marine fauna are largely unknown, except for one species (Ficopomatus enigmaticus) which was reported to cause serious environmental impacts. -
A New Species of Nicon Kinberg, 1866 (Polychaeta, Nereididae) from Ecuador, Eastern Pacific, with a Key to All Known Species of the Genus
A peer-reviewed open-access journal ZooKeys 269: 67–76A new (2013) species of Nicon Kinberg, 1866 (Polychaeta, Nereididae) from Ecuador... 67 doi: 10.3897/zookeys.269.4003 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new species of Nicon Kinberg, 1866 (Polychaeta, Nereididae) from Ecuador, Eastern Pacific, with a key to all known species of the genus Jesús Angel de León-González1,†, Berenice Trovant2,‡ 1 Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Ap. Postal 5, Suc. “F”, San Nicolás de los Garza, Nuevo León, 66451, México 2 Centro Nacional Patagónico (CONICET), Boulevard Brown 2915, U9120ACF Puerto Madryn, Chubut, Argentina † urn:lsid:zoobank.org:author:F347D71F-DDEA-4105-953F-4FE71A5D6809 ‡ urn:lsid:zoobank.org:author:C9AB5469-9F6E-4F75-9C00-A3C919119900 Corresponding author: Jesús Angel de León-González ([email protected]) Academic editor: C. Glasby | Received 18 September 2012 | Accepted 14 January 2013 | Published 18 February 2013 urn:lsid:zoobank.org:pub:DB15484A-C844-4325-A969-65E4884EDD02 Citation: de León-González JA, Trovant B (2013) A new species of Nicon Kinberg, 1866 (Polychaeta, Nereididae) from Ecuador, Eastern Pacific, with a key to all known species of the genus. ZooKeys 269: 67–76. doi: 10.3897/ zookeys.269.4003 Abstract A new species of Nicon Kinberg, 1866 from the east Pacific coast of Ecuador is described. The new species is characterized by a long, thin dorsal ligule on median and posterior parapodia and infracicular sesquig- omph falcigers in the neuropodia. A key to all species of Nicon is provided. Keywords Annelida, polychaetes, Nereididae, intertidal, Ecuador, taxonomy, systematics Copyright J.A.