VISUAL COMMUNICATION a WRITER's GUIDE Second Edition

Total Page:16

File Type:pdf, Size:1020Kb

VISUAL COMMUNICATION a WRITER's GUIDE Second Edition VISUAL COMMUNICATION A WRITER’S GUIDE Second Edition Susan Hilligoss, Clemson University Tharon Howard, Clemson University New York Boston San Francisco London Toronto Sydney Tokyo Singapore Madrid Mexico City Munich Paris Cape Town Hong Kong Montreal i This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (includ- ing on the World Wide Web) will destroy the integrity of the work and is not permitted.The work and materials from it should never be made available to students except by instructors using the accom- panying text in their classes.All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical pur- poses and the needs of other instructors who rely on these materials. Visual Communication: A Writer’s Guide, Second Edition, by Susan Hilligoss and Tharon Howard Copyright ©2002 Pearson Education, Inc. (Publishing as Longman Publishers.) All rights reserved. Printed in the United States of America. Instructors may reproduce portions of this book for classroom use only. All other reproductions are strictly prohibited without prior permission of the publisher, except in the case of brief quotations embodied in critical articles and reviews. ISBN: 0-321-09981-8 1 2 3 4 5 6 7 8 9 10 - CRW - 04 03 02 01 i Contents Chapter 1 Why Visual Communication for Writers? 1 Chapter 2 First Impressions: Perception and Genres 7 Chapter 3 Second Impressions: Interpreting Images 31 and Information Graphics Chapter 4 Planning Visual Design 55 Chapter 5 Creating Pages and Screens 97 Chapter 6 Using Type 121 Chapter 7 Adding Images and Information Graphics 133 Chapter 8 Putting It Together: Sample Documents 141 Chapter 9 Learning More about Visual Communication 163 Glossary 175 iii Acknowledgments We are grateful to John Trimbur for his interest in Susan’s visual communication seminar that led to the first edition of this book, and for the high example he has set in composition studies. For her enthusiasm and encouragement to make the first edition happen, Anne E. Smith has our sincere thanks. We also appreciate Lynn Huddon’s efforts and support on this second edition. Donna Campion coordinated the process of putting together both editions with skill and tact. Leslie Taggart made a number of valuable suggestions. We also thank the College of Architecture, Arts, and Humanities and the Pearce Center for Professional Communication at Clemson University for use of the Multimedia Authoring Teaching and Research Facility. We wish to recognize Christopher Lohr’s efforts on the layout of the first edition and Wendy Howard’s help proofreading the second edition. Bryce and Logan Howard gave their patience. Permission to reproduce two flyers was given by the Department of Speech and Communication Studies, Clemson University. Thanks to the graduate students in Visual Communication for creating the genre graphics in Chapters 4, 5, and 8. Permission to reproduce their work is as follows: Amy Joy Bumgarner, makeover of speech lecture flyer; Keena Hamilton, typesetting of poem by William Wordsworth; Joseph D. Hooper, Kids newsletter; Ryan James Keith, original and makeover of presentation slides; Christopher Lohr, logo original and makeover, with comments, and portfolio pages; Rebecca J. Pope, makeover of speech club flyer and commen- tary; M. Esther Revis-Wagner, original and makeover of resumes; Deborah M. Staed, diagrams of whole page, body section, and navigation section of Web pages, with commentary, and original and makeover of Web pages; Myra A.Whittemore, grant proposal with budget, outcome graphic, and commentary; Michele Slater, storyboard for Web pages and tri-fold brochure; Sarah Weathers, Ceilbrite Web pages; Angela Davis, Aim High image poem; Parker Smith, tri-fold brochure and Livewire newsletter redesign. David Munger of Digital Text Con- struction, Davidson, NC, provided additional graphics. Our thanks to Barbara Heifferon for the example of the South Carolina Department of Transportation project. Susan’s technical editing class, spring 1999, created the glossary and provided additional copyediting of the first edition. Finally, we are indebted to many people for their contributions to visual rhetoric and document design, especially Stephen A. Bernhardt, Karen A. Schriver, Anne Wysocki, and Charles Kostelnick. iv CHAPTER 1 Why Visual Communication for Writers? In the past, college students wrote mainly essays and research papers seen by teachers and no one else. These papers were typed on typewriters, or “word-processed” and printed out on equipment that emulated typed text. They were formatted according to standards based on the manuscript preparation guidelines that college teachers used to submit their own writing to scholarly journals or presses. Today, besides essays, college students write many other types of documents and consider readers outside the classroom. They prepare their work with sophisticated computers and printers that rival the output of commercial printing. They have many choices of fonts and the ability to incorporate drawings, charts, and graphs. They have access to a wealth of graphics via the Internet and inexpensive collections of clip art, as well as the means to create digital photographs and artwork. They make pages for the World Wide Web and effectively publish their work to a large audience. They collaborate with others, so that their documents present the ethos of a group, class, or organization to their readers. In short, the world of college writing has changed. The visual design of the traditional essay or research paper, so long taken for granted, is only one of many “looks” that college writing may take. With so many choices, how should you, as a writer, make decisions about visual design? This guide is intended to provide strategies and numerous examples for you to consider. What is visual communication? In this guide, visual communication means all the ways that writers and readers interact through the look of pages and screens. Visual design means the structured process of planning for this interaction. There are other similar, overlapping terms. The widely used term document design covers much the same ground as visual communication, except that document design may also refer to matters of language, such as employing certain types of paragraph and sentence structure that have been shown to be easily understood by readers (Shriver 10; Felker et al. 1-2). Communications design and information design also refer broadly to visual communication.1 In this guide, texts 1 and documents refer to both paper and on-screen writing. Likewise, images and graphics are used interchangeably for visuals that are distinct from verbal material. Visual communication is part of the writer’s task because the visual elements of a text affect how readers interact with the words. The interaction is rhetorical, and the importance of visual communication in documents is also supported by empirical research. Visual communication is rhetorical We can think of a document as a field of interacting rhetorical clusters. Karen A. Shriver Increasingly, documents are being regarded as more than words. Readers do not experi- ence your written words in a vacuum. Typically you present your words on paper or on screen—that is, you arrange and deliver the text to readers. As soon as they encounter your text, readers immediately start to take in many kinds of visual information about it, from its apparent size to details of type, color, layout, and illustrations. As they continue to read or even just examine it, they use (and make judgments about) the visual design. Thus the design of a document is rhetorical, part of the interaction of writers and readers and contrib- uting to effective communication. Consider visual design even during the early stages of your writing, invention and audience analysis. Good visual design clarifies a document’s organization, called arrangement in classical rhetoric (Dragga and Gong 12). As for style, just as you choose your words to be “effective, appropriate, and striking,” so may you choose images or visual design elements (Shriver 65). Design is also integral to effective presentation, known rhetorically as delivery (Dragga and Gong 14). Visual design contributes to your ethos or credibility. Design that respects readers’ knowledge supports a text’s ethical appeal, while inappropriate format or jarring visual choices may make the document less credible. Table 1.1 Visual communication and classical rhetoric Invention Style Arrangement Delivery Ethos 2 In summary, when you plan the look of your document with your readers in mind, you engage in rhetorical thinking. Visual design organizes readers’ experiences of texts Research in cognition, perception, and human factors psychology demonstrates that read- ers’ understanding of texts is influenced by formatting and visual cues. Reading is a complex activity that relies on many layers of visual information. How readers read. Studies of functional documents like manuals and forms have shown that readers do not read every word: 1. Readers are selective about what and how they read. 2. They read to accomplish their own purposes. 3. They actively interpret documents in light of their own knowledge and expectations. Initially, readers decide what and how they will read. As Janice C. Redish, a researcher in document design and usability testing, declares, “Reading is a voluntary act; people don’t have to do it” (“Understanding” 15). In the workplace, in public discourse, and at school, many documents compete for attention. Readers are compelled to be selective. Once they decide to look at a document, readers do not necessarily read from start to finish. They scan, then read with their goals in mind—that is, they use the document as a tool to accomplish their own purposes. For example, in one study, readers of a manual read only two or three sentences at a time before they returned to the task at hand (“Understanding” 20).
Recommended publications
  • What's Your Theory of Effective Schematic Map Design?
    What’s Your Theory of Effective Schematic Map Design? Maxwell. J. Roberts Department of Psychology University of Essex Colchester, UK [email protected] Abstract—Amongst designers, researchers, and the general general public accept or reject radical new creations. public, there exists a diverse array of opinion about good practice Furthermore, the lay-theories held by designers will affect the in schematic map design, and a lack of awareness that such products that they create and the recommendations that they opinions are not necessarily universally held nor supported by make. Similarly, the lay-theories of transport managers will evidence. This paper gives an overview of the range of opinion determine design specifications and the acceptance or rejection that can be encountered, the consequences that this has for of end-products. With so many different theories in circulation, published designs, and a framework for organising the various conflicts will be inevitable, hence the polarised response to the views. controversial Madrid Metro map of 2007, which generated a huge adverse reaction amongst residents: presumably, the Keywords—schematic mapping; lay-theories, expectations and transport authority believed that this was a sound design. prejudices; effective design; cognition; intelligence. Likewise, the adverse public response to the removal of the I. LAY-THEORIES OF DESIGN River Thames from the London Underground map in 2009. The lay-theory held by officials, presumably, was that the river Whenever I create a controversial new schematic map and was irrelevant to usability. The public disagreed, and the river publish it on the internet, the diversity of opinion that it evokes returned a few months later.
    [Show full text]
  • Module 4 Electronic Diagrams and Schematics
    ENGINEERING SYMBOLOGY, PRINTS, AND DRAWINGS Module 4 Electronic Diagrams and Schematics Engineering Symbology, Prints, & Drawings Electronic Diagrams & Schematics TABLE OF CONTENTS Table of Co nte nts TABLE OF CONTENTS ................................................................................................... i LIST OF FIGURES ...........................................................................................................ii LIST OF TABLES ............................................................................................................ iii REFERENCES ................................................................................................................iv OBJECTIVES .................................................................................................................. 1 ELECTRONIC DIAGRAMS, PRINTS, AND SCHEMATICS ............................................ 2 Introduction .................................................................................................................. 2 Electronic Schematic Drawing Symbology .................................................................. 3 Examples of Electronic Schematic Diagrams .............................................................. 6 Reading Electronic Prints, Diagrams and Schematics ................................................. 8 Block Drawing Symbology ......................................................................................... 13 Examples of Block Diagrams ....................................................................................
    [Show full text]
  • Vision & Implementation Plan
    Buffalo River Greenway Vision & Implementation Plan Implementation Guidelines for the Buffalo River, Cayuga Creek, Buffalo Creek and Cazenovia Creek within the City of Buffalo and Towns of Cheektowaga and West Seneca. Prepared For: Buffalo Niagara RIVERKEEPER® Prepared By: Lynn Mason, ASLA With Assistance From: Julie Barrett O’Neill Jill Spisiak Jedlicka Lynda Schneekloth May 2006 II TABLE OF CONTENTS FIGURE LIST pg. IV INVOLVED AGENCIES pg. VI EXECUTIVE SUMMARY pg. VII I. GREENWAY VISION pg. 1 1. Greenway Benefits pg. 3 2. Buffalo River Greenway Project Area pg. 8 II. GREENWAY PLANNING HISTORY pg. 15 1. Recent Projects pg. 17 2. Recent Planning Projects pg. 28 III. EXISTING GREENWAY RESOURCES pg. 29 1. Parks & Parkways pg. 31 2. Conservation Areas pg. 37 3. Bike/Hike Trails pg. 38 4. Boat Launches and Marinas pg. 41 5. Fishing Access and Hot Spots pg. 41 6. Urban Canoe Trail and Launches pg. 42 7. Heritage Interpretation Areas pg. 44 IV. PROPOSED NEW GREENWAY ELEMENTS pg. 47 1. Introduction pg. 49 2. Buffalo River Trail Segments pg. 56 3. Site Specific Opportunities pg. 58 V. IMPLEMENTATION pg. 95 1. Introduction pg. 97 2. Implementation Strategies pg. 106 3. Leveraging Resources and Identifying Funding pg. 108 4. Legislative Action pg. 110 5. Education and Encouragement pg. 110 6. Operations and Maintenance pg. 111 7. Trail Development pg. 112 8. Design Guidelines pg. 181 APPENDIX/ BACKGROUND INFORMATION pg. 189 A. Existing Greenway Resources pg. 191 B. Prohibited Uses pg. 209 C. Phytoremediation pg. 213 D. Buffalo River Paper Streets: A Status Report pg. 215 REFERENCES pg.
    [Show full text]
  • How Neurons Exploit Fractal Geometry to Optimize Their Network Connectivity Julian H
    www.nature.com/scientificreports OPEN How neurons exploit fractal geometry to optimize their network connectivity Julian H. Smith1,5, Conor Rowland1,5, B. Harland2, S. Moslehi1, R. D. Montgomery1, K. Schobert1, W. J. Watterson1, J. Dalrymple‑Alford3,4 & R. P. Taylor1* We investigate the degree to which neurons are fractal, the origin of this fractality, and its impact on functionality. By analyzing three‑dimensional images of rat neurons, we show the way their dendrites fork and weave through space is unexpectedly important for generating fractal‑like behavior well‑ described by an ‘efective’ fractal dimension D. This discovery motivated us to create distorted neuron models by modifying the dendritic patterns, so generating neurons across wide ranges of D extending beyond their natural values. By charting the D‑dependent variations in inter‑neuron connectivity along with the associated costs, we propose that their D values refect a network cooperation that optimizes these constraints. We discuss the implications for healthy and pathological neurons, and for connecting neurons to medical implants. Our automated approach also facilitates insights relating form and function, applicable to individual neurons and their networks, providing a crucial tool for addressing massive data collection projects (e.g. connectomes). Many of nature’s fractal objects beneft from the favorable functionality that results from their pattern repeti- tion at multiple scales 1–3. Anatomical examples include cardiovascular and respiratory systems4 such as the bronchial tree5 while examples from natural scenery include coastlines 6, lightning7, rivers8, and trees9,10. Along with trees, neurons are considered to be a prevalent form of fractal branching behavior11.
    [Show full text]
  • The Convergence of Graphics and Vision
    The Convergence of Graphics Cover Feature and Vision Approaching similar problems from opposite directions, graphics and vision researchers are reaching a fertile middle ground. The goal is to find the best possible tools for the imagination. This overview describes cutting- edge work, some of which will debut at Siggraph 98. Jed Lengyel t Microsoft Research, the computer vision sampled representations. This use of captured Microsoft and graphics groups used to be on opposite scenes (enhanced by vision research) yields richer Research sides of the building. Now we have offices rendering and modeling methods (for graphics) along the same hallway, and we see each other than methods that synthesize everything from A every day. This reflects the larger trend in our scratch. field as graphics and vision close in on similar problems. • Exploiting temporal and spatial coherence (sim- Computer graphics and computer vision are inverse ilarities in images) via the use of layers and other problems. Traditional computer graphics starts with techniques is boosting runtime performance. input geometric models and produces image se- • The explosion in PC graphics performance is quences. Traditional computer vision starts with input making powerful computational techniques more image sequences and produces geometric models. practical. Lately, there has been a meeting in the middle, and the center—the prize—is to create stunning images in real VISION AND GRAPHICS CROSSOVER: time. IMAGE-BASED RENDERING AND MODELING Vision researchers now work from images back- What are vision and graphics learning from each ward, just as far backward as necessary to create mod- other? Both deal with the image streams that result els that capture a scene without going to full geometric when a real or virtual camera is exposed to the phys- models.
    [Show full text]
  • How Scientists Develop Competence in Visual Communication Marilyn Ostergren
    How scientists develop competence in visual communication Marilyn Ostergren A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: David M. Levy, Chair Andrew J. Ko Jennifer A. Turns Allyson Carlyle Program Authorized to Offer Degree: The Information School ©Copyright 2013 Marilyn Ostergren University of Washington Abstract How scientists develop competence in visual communication Marilyn Ostergren Chair of the Supervisory Committee: Dr. David M. Levy Information School Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This examination takes the form of an extensive multi- disciplinary integrative literature review and a series of interviews with graduate-level science students. The results are presented as a conceptual framework that lays out the components of competence in visual communication, including the communicative goals of science visuals, the characteristics of effective visuals, the skills and knowledge needed to create effective visuals and the learning experiences that promote the acquisition of these forms of skill and knowledge. This conceptual framework can be used to inform pedagogy and thus help graduate students achieve a higher level of competency in this area; it can also be used to identify aspects of acquiring competence in visual communication that need further study. ACKNOWLEDGEMENTS To the chair of my committee, David Levy: I am deeply grateful for your mentorship, support and guidance.
    [Show full text]
  • E11 Lecture 5: Design Representation
    E11 Lecture 5: Design Representation Prof. David Money Harris Fall 2014 Outline l Mechanical Design Representation l Orthographic Projections l Isometric Projections l Computer-Aided Design (CAD) l Computer-Aided Manufacturing (CAM) l Autonomous Vehicle Chassis l Electronic Design Representation l Schematic Elements l Mudduino Schematic Design Representation l How to represent a 3-dimensional object on a 2- dimensional page? l Projections l Orthographic l Isometric Orthographic Projection l Front, top, and side views l orthos “straight” + graphic “drawing” l Used by Greek and Roman astronomers and engineers Orthographic Projection Top View S i d e V i e w Front View Isometric Projection l Shows three faces all at once l Preserves distances accurately along each axis l Angles between each axis are 120 degrees l iso = “equal” + metric = “measure” Isometric Projection 120o 60o 60o Example: I-beam Datum Features l Datum features are used to align the part l Make measurements from a consistent edge l Feature labeled “A” is the primary datum l Align the part to this edge whenever possible l Keep it flat against a vice during machining l Features “B” and “C” are secondary and tertiary datum Dimensioning l Dimensions are measured from the datum features l Only a minimum necessary set are shown l If a dimension isn’t labeled, it is implied by symmetry l Often you will need to make calculations l Mark up the drawing to make your life easier in the shop l Holes are specified by their diameter (∅) l Some dimensions have tolerances shown Example: Sensor
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS City Government Electric Department. 36 City Organizational Chart . 2 Fire Department . 40 Mayor’s Message . 3 Fletcher Free Library . 43 City Officials Appointed by the Mayor . 6 Human Resources Department . 46 Vermont Legislators . 7 Innovation & Technology. 48 Mayors of Burlington . 7 Parks, Re creation & Waterfront. 49 City Council . 8 Planning & Zoning Department . 55 City Council Standing Committees . 9 Police Department. 58 City Department Information . 10 Public Works Department . 61 Important Dates . 11 School District . 66 City Holidays. 11 Telecom, Burlington . 71 Board of School Commissioners . 12 Regional Organizations City Commissioners. 13 Annual Reports Neighborhood Planning Assemblies . 15 Burlington Housing Authority . 72 Regularly Scheduled Chittenden Solid Waste District . 73 Commission Meetings . 16 Green Mountain Transit . 75 Justices of the Peace . 17 Winooski Valley Park District . 77 Department Annual Reports Miscellaneous Airport, Burlington International . 18 Annual Town Meeting . 79 Arts, Burlington City . 20 Salaries. 81 Assessor, Office of the City . 23 General Obligation Debt. 100 Attorney, Office of the City . 24 Appraised Valuation. 100 Church Street Marketplace. 27 Tax Exempt Property Summary. 100 Clerk/Treasurer, Office of the City . 29 Management Letter . 101 Code Enforcement . 31 Audit Summary . 106 Community & Economic Development Office . 32 ACKNOWLEDGMENTS Design/Production: Futura Design Printing: Queen City Printers Inc. Printed on PC Recycled Paper Cover Photo: Courtesy of Andrew Krebs Project Management: Liz Amler, Mayor’s Office This report also is available online at www.burlingtonvt.gov. Thanks to the Department of Parks, Recreation & Waterfront for the use of photos throughout this report. This publication was printed on 100% PC Recycled FSC® certified paper.
    [Show full text]
  • Geotime Information Visualization
    GeoTime Information Visualization Thomas Kapler and William Wright 1. Oculus Info Inc ABSTRACT of events over the single dimension of time. A Geographic Analyzing observations over time and geography is a common Information System (GIS) product, such as MS MapPoint, or task but typically requires multiple, separate tools. The objective ESRI ArcView, shows events in the single dimension of locations of our research has been to develop a method to visualize, and on a map. There are also link analysis tools, such as Netmap work with, the spatial inter-connectedness of information over (www.netmapanalytics.com) or Visual Links (www. time and geography within a single, highly interactive 3-D view. visualanalytics.com) that display events as a network diagram, or A novel visualization technique for displaying and tracking graph, of objects and connections between objects. Several events, objects and activities within a combined temporal and systems exist for tracking highly connected information, most geospatial display has been developed. This technique has been developed for police investigative purposes [Harries, 1999]. implemented as a demonstratable prototype called GeoTime in Analyst Notebook and CrimeLink, for example, provide tools for order to determine potential utility. Initial evaluations have been organizing and arranging fragments of information into with military users. However, we believe the concept is visualizations intended to help the analyst make sense of complex applicable to a variety of government and business analysis tasks. relationships. These tend to be one dimensional representations that show either organizational structures, timelines, CR Categories: H.5.2 [User Interfaces]: Graphical User communication networks or locations. In each case, only a thin Interfaces, I.3.6 [Computer Graphics]: Interaction Techniques.
    [Show full text]
  • Schematic Storyboarding for Video Visualization and Editing
    Schematic Storyboarding for Video Visualization and Editing Dan B Goldman1 Brian Curless1 David Salesin1,2 Steven M .Seitz1 1University of Washington 2Adobe Figure 1 Left: Four still frames of a shot from the 1963 film Charade. Top: Schematic storyboard for the same shot, composed using the four frames at left. The subject appears in multiple locations, and the 3D arrow indicates a large motion toward the camera. The arrow was placed and rendered without recovering the 3D location of the subject. Bottom: Storyboard for the same shot, composed by a professional storyboard artist. (Credit: Peter Rubin.) Abstract 1 Introduction We present a method for visualizing short video clips in a sin- Video editing is a time-consuming process, in some part due to the gle static image, using the visual language of storyboards. These sheer volume of video material that must be repeatedly viewed and schematic storyboards are composed from multiple input frames recalled. Video editing software offers only token mnemonic assis- and annotated using outlines, arrows, and text describing the mo- tance, representing each video segment with only a single frame, tion in the scene. The principal advantage of this storyboard repre- typically defaulting to the segment’s first frame. But this frame is sentation over standard representations of video — generally either often unrepresentative of the video content, and in any case does a static thumbnail image or a playback of the video clip in its en- not illustrate other important aspects of the video, such as camera tirety — is that it requires only a moment to observe and compre- and subject motion.
    [Show full text]
  • Isometric Projections and Other Study and Display Methods Used in Preliminary Design of I-70 Through Glenwood Canyon
    Transportation Research Record 806 l Isometric Projections and Other Study and Display Methods Used in Preliminary Design of I-70 Through Glenwood Canyon JOSEPH R. PASSONNEAU The designers of I· 70 tl·1rough Glenwood Canyon, Colorado, were responsible rately contrived presentations but by using drawings to reviewers from many backgrounds. All wanted to find a good fit between peeled from the drafting boards at the beginning of highway and natural landscape, but their definitions of "good fit" varied. Ac· each meeting. curate graphic descriptions of the canyon and of alternative highway proposals were important to designers and reviewers. These were needed to show con· This paper first summarizes study and display ventional highway plans, profiles, and sections; to show the appearance of the techniques used in the design of I-70. It then highway in the natural landscape; and to show the precise relation between describes in detail an isometric method of drawing highway alternatives and landforms and plant communities taken or impinged upon. Canyon and highway alternatives were described by using conventional highway alternatives in a natural landscape that was artist's sketches, colored slides and black-and-white photographs, surveyed developed for this project. cross sections combined with perspective backgrounds, environmental maps, isometric drawings, composite drawings or "story boards", computer graphic TECHNIQUES USED IN DESIGN OF I-70 cross sections at close intervals, highway representations painted into photo· graphs, scale models, full-size mock-ups, and even diagrams and cartoons. An Conventional Sketches of Existing Landscape isometric projection technique developed for the project was particularly help· ful in the design of the highway in the western half of the canyon.
    [Show full text]
  • Generating Topologically Correct Schematic Maps 1 Introduction
    Generating Top ologically Correct Schematic Maps Silvania Avelar Matthias Muller Department of Computer Science Swiss Federal Institute of Technology Zurich Switzerland favelarmuellermginfethzch Abstract This pap er studies the creation of schematic maps from traditional vectorbased carto graphic information An algorithm is prop osed to mo dify p ositions of lines in the original input map with the goal of pro ducing as output a schematic map that meets certain geomet ric and aesthetic criteria Sp ecial emphasis is placed here on preserving top ological structure of features during this transformation The known existing metho ds for preserving top ol ogy during map transformation generally involve computing several constrained Delaunay triangulations MolGol JBW Rua The algorithm prop osed here computes a transformation which preserves top ological relations among linear features using simple ge ometric op erations and tests Keywords Schematic maps digital cartography top ology computational geometry Intro duction Schematic maps are linear cartograms designed to convey only essential features of network routes Mon They indicate imp ortant top ological information on transp ortation or utility maps such as connectivity and stops while preserving only a general sense of the original geom etry Dor As long as essential top ological information is preserved the length and shap e of routes in schematic maps need not b e faithful to reality This cartographic exibility is p ossible b ecause geometric accuracy is considered to b e less imp ortant
    [Show full text]