Neurosteroid Binding Sites on the GABAA Receptor Complex As Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence

Total Page:16

File Type:pdf, Size:1020Kb

Neurosteroid Binding Sites on the GABAA Receptor Complex As Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence Hindawi Publishing Corporation Advances in Pharmacological Sciences Volume 2011, Article ID 926361, 12 pages doi:10.1155/2011/926361 Review Article Neurosteroid Binding Sites on the GABAA Receptor Complex as Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence Mary W. Hulin,1, 2 Russell J. Amato,1 Johnny R. Porter,3 Catalin M. Filipeanu,1 and Peter J. Winsauer1, 2 1 Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112-1393, USA 2 Alcohol and Drug Abuse Research Center, LSU Health Sciences Center, New Orleans, LA 70112-1393, USA 3 Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112-1393, USA Correspondence should be addressed to Mary W. Hulin, [email protected] Received 10 May 2011; Accepted 17 July 2011 Academic Editor: Naheed R. Mirza Copyright © 2011 Mary W. Hulin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Despite the prevalence of alcohol abuse and dependence in the US and Europe, there are only five approved pharmacotherapies for alcohol dependence. Moreover, these pharmacotherapeutic options have limited clinical utility. The purpose of this paper is to present pertinent literature suggesting that both alcohol and the neurosteroids interact at the GABAA receptor complex and that the neurosteroid sites on this receptor complex could serve as new targets for the development of novel therapeutics for alcohol abuse. This paper will also present data collected by our laboratory showing that one neurosteroid in particular, dehydroepiandrosterone (DHEA), decreases ethanol intake in rats under a variety of conditions. In the process, we will also mention relevant studies from the literature suggesting that both particular subtypes and subunits of the GABAA receptor play an important role in mediating the interaction of neurosteroids and ethanol. 1. Introduction that one neurosteroid in particular, dehydroepiandrosterone (DHEA), may be a key to discovering promising new The suggestion that neuroactive steroids could have potential therapeutics for treating alcohol abuse and dependence. In as new pharmacotherapies for alcohol abuse and dependence this process, we also hope to provide compelling evidence followed shortly after the discovery that ethanol admin- for the involvement of the GABAA receptor complex and the istration released specific neurosteroids. These same data role specific subunits of this complex may play in the effects also directly implicated the endogenous neurosteroids as of DHEA on ethanol intake. ff potential contributors to the behavioral e ects of ethanol If there is any doubt that new treatments for alcohol [1, 2]. However, elucidating the interaction between the abuse and dependence are needed, one need only to review ffi neuroactive steroids and ethanol has been especially di cult some of the most recent epidemiological data on excessive because both produce a wide variety of molecular and alcohol use. In 2009, an estimated 18.6 million persons ff behavioral e ects and both act at multiple receptors [3, 4]. aged 12 or older met criteria for alcohol dependence or Complicating matters even further, neurosteroids also have abuse, representing 7.4 percent of the US population [5]. both genomic and nongenomic effects [4] that are often Despite the prevalence of this problem, there are only five only dissociable in terms of their time course. Thus, the approved pharmacotherapies for alcohol dependence in the goal of this paper is to present pertinent literature regarding US and Europe [6]. Furthermore, these pharmacotherapeu- the interaction of ethanol and the neurosteroids while tic options have limited clinical utility. For instance, the also highlighting research from our laboratory suggesting opioid antagonist naltrexone has been shown to have limited 2 Advances in Pharmacological Sciences success apart from individuals with a family history of an increased tonic current amplitude, tonic current noise, alcohol dependence, those with an enhanced opioid response and spontaneous inhibitory postsynaptic current. However, to ingestion of alcohol, those who self-report enhanced using similar methods, Botta et al. [25] found that this alcohol cravings, and individuals with a specific μ-opioid mutation did not increase the sensitivity of GABAA receptors receptor polymorphism [7–9]. Acamprosate, a synthetic to ethanol; rather, they reported that ethanol modulated homotaurine derivative, has been shown to decrease alco- the currents of these channels indirectly via a presynaptic hol intake, purportedly via modulation of glutamate [9] mechanism. The importance of the α4 subunit in mediating and glycine [10] receptors. However, acamprosate had no the effects of ethanol also remains to be determined, as α4 direct effect on recombinant glutamate or glycine receptors knockout mice had similar anxiolytic, hypothermic, ataxic, expressed in Xenopus oocytes at low, clinically relevant and hypnotic responses to ethanol compared to wild-type concentrations [11], and therefore, the mechanism by which littermates [26]. acamprosate modulates ethanol consumption is still unde- In addition to modulating GABAA receptors directly, fined. Experiments involving acamprosate suggest that it is ethanol can also modulate them indirectly by altering the only fully effective in highly motivated subjects with a “goal levels of GABA-modulating neurosteroids, such as 3α,5α- of abstinence” [12] and that the combined experience of THP (allopregnanolone) and 3α,5α-THDOC (allotetrahy- acamprosate with ethanol is necessary for decreasing ethanol drodeoxycorticosterone) [1, 2, 27–29]. These neurosteroids intake [13]. are currently thought to contribute to the various behavioral effects of ethanol, including its sedative-hypnotic [30, 31], ff 2. Importance of the GABA System in anxiolytic [32], and discriminative-stimulus e ects [33–35]. A For example, a reduction in the levels of 3α,5α-THP and the Behavioral Effects of Ethanol 3α,5α-THDOC by the 5α-reductase inhibitor finasteride Although a variety of neurotransmitters and signaling path- blocked the acquisition of ethanol drinking and the devel- ways have been shown to be involved in the behavioral effects opment of ethanol preference in male C57BL/6J mice [36]. of ethanol (e.g., [14–16]), central GABAergic activity is In healthy, adult social drinkers, finasteride also reportedly ff widely accepted to be one of the most important components decreased the subjective e ects of ethanol, leading some of ethanol’s effects as a CNS depressant [17, 18]. Behaviorally, investigators to speculate that these neuroactive steroids were ff this supposition is supported by research showing that integral for producing ethanol’s subjective e ects [37]. In benzodiazepines and barbiturates that positively modulate rats trained to discriminate ethanol from saline, 10 mg/kg the GABA receptor complex can substitute for ethanol of pregnanolone partially substituted (60%–70% drug-lever A ff in drug-discrimination procedures [19, 20]. Electrophys- responding) for the discriminative-stimulus e ects of 1 g/kg iological and genetic techniques have also furthered our of ethanol subsequent to chronic administration of either understanding of the interaction between ethanol and the saline or ethanol during adolescence [38]. Similarly, in rats trained to discriminate 5.6 mg/kg of pregnanolone from GABAA receptor complex by showing that it has both direct and indirect effects on the composition of this saline, 1 g/kg of ethanol only partially substituted for this heteropentameric chloride ion channel. For example, in neurosteroid [39]. Together, these symmetrical discrimi- nation data indicate that the neurosteroid pregnanolone vitro studies with native and recombinant GABAA receptors indicate ethanol is able to enhance GABA-mediated currents has overlapping, but not identical, discriminative-stimulus ff at receptors containing a δ subunit (which are found almost e ects with ethanol. exclusively extrasynaptically in vivo) and at doses of ethanol In contrast to the partial substitution found with preg- consistent with those achieved during typical episodes of nanolone, Gurkovskaya and Winsauer [38] demonstrated ff social drinking in humans [18, 21, 22]. Studies with mice that the discriminative-stimulus e ects of DHEA, which in which the δ subunit has been knocked out have shown comes from a common precursor pregnenolone, were unlike those of ethanol in rats trained to discriminate 1 g/kg of the importance of δ subunit-containing GABAA receptor complexes in mediating many of the effects of ethanol. ethanol from saline. Furthermore, DHEA only modestly These knockout mice are less sensitive to the anticonvulsant shifted the curve for ethanol-lever responding to the right when it was administered shortly before varying doses effects of ethanol, demonstrate a decreased hyperexcitability of ethanol (0.18–1.8 g/kg). Bienkowski and Kostowski [33] during ethanol withdrawal, and show a lower preference δ also reported a similar finding in that the sulfated deriva- for ethanol compared to wild-type controls. In contrast, ff ff tive of DHEA, DHEAS, was ine ective at blocking the subunit knockouts did not di er from controls in ethanol- discriminative-stimulus effects of ethanol. Thus, the effects induced anxiolysis, ataxia, hypnosis, or hypothermia [23]. of DHEA on the discriminative-stimulus
Recommended publications
  • Cognition and Steroidogenesis in the Rhesus Macaque
    Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................
    [Show full text]
  • The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia
    PERIOPERATIVE MEDICINE Anesthesiology 2010; 113:1270–9 Copyright © 2010, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia Malin Jonsson Fagerlund, M.D., Ph.D.,* Jessica Kåhlin, M.D.,† Anette Ebberyd, B.M.A.,‡ Gunnar Schulte, Ph.D.,§ Souren Mkrtchian, M.D., Ph.D.,ʈ Lars I. Eriksson, M.D., Ph.D., F.R.C.A.# Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/113/6/1270/252613/0000542-201012000-00011.pdf by guest on 28 September 2021 ABSTRACT with DNA microarrays, real-time polymerase chain reaction, Background: Hypoxia is a common cause of adverse events and immunohistochemistry. in the postoperative period, where respiratory depression due Results: We found gene expression of the oxygen-sensing ϩ to residual effects of drugs used in anesthesia is an important pathway, heme oxygenase 2, and the K channels TASK ϩ underlying factor. General anesthetics and neuromuscular (TWIK-related acid sensitive K channel)-1 and BK (large- blocking agents reduce the human ventilatory response to conductance potassium channel). In addition, we show the hypoxia. Although the carotid body (CB) is the major oxygen expression of critical receptor subunits such as ␥-aminobu- ␣ ␤ ␥ sensor in humans, critical oxygen sensing and signaling path- tyric acid A ( 2, 3, and 2), nicotinic acetylcholine recep- ␣ ␣ ␤ ways have been investigated only in animals so far. Thus, the tors ( 3, 7, and 2), purinoceptors (A2A and P2X2), and aim of this study was to characterize the expression of key the dopamine D2 receptor. genes and localization of their products involved in the hu- Conclusions: In unique samples of the human CB, we here man oxygen sensing and signaling pathways with a focus on demonstrate presence of critical proteins in the oxygen-sens- receptor systems and ion channels of relevance in anesthesia.
    [Show full text]
  • Structural Basis for Potentiation by Alcohols and Anaesthetics in a Ligand-Gated Ion Channel
    ARTICLE Received 10 Jul 2012 | Accepted 28 Feb 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2682 Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel Ludovic Sauguet1,2,3,4,*, Rebecca J. Howard5,w,*, Laurie Malherbe1,2,3,4,UiS.Lee5, Pierre-Jean Corringer3,4, R. Adron Harris5 & Marc Delarue1,2 Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experi- ments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentra- tions of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol. 1 Unite´ de Dynamique Structurale des Macromole´cules, Institut Pasteur, F-75015 Paris, France. 2 UMR 3258, Centre National de la Recherche Scientifique, F-75015 Paris, France. 3 Groupe Re´cepteurs-Canaux, Institut Pasteur, F-75015 Paris, France. 4 Unite´ de Recherche Associe´e 2182, Centre National de la Recherche Scientifique, F-75015 Paris, France.
    [Show full text]
  • Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
    International Journal of Molecular Sciences Article Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors Hana Kubová 1,* , Zde ˇnkaBendová 2,3 , Simona Moravcová 2,3 , Dominika Paˇcesová 2,3, Luisa Rocha 4 and Pavel Mareš 1 1 Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (Z.B.); [email protected] (S.M.); [email protected] (D.P.) 3 National Institute of Mental Health, 25067 Klecany, Czech Republic 4 Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City 14330, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +420-2-4106-2565 Received: 31 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex.
    [Show full text]
  • The Role of GABRA2 in Risk for Conduct Disorder and Alcohol and Drug Dependence Across Developmental Stages
    Behavior Genetics, Vol. 36, No. 4, July 2006 (Ó 2006) DOI: 10.1007/s10519-005-9041-8 The Role of GABRA2 in Risk for Conduct Disorder and Alcohol and Drug Dependence across Developmental Stages Danielle M. Dick,1,9 Laura Bierut,1 Anthony Hinrichs,1 Louis Fox,1 Kathleen K. Bucholz,1 John Kramer,2 Samuel Kuperman,2 Victor Hesselbrock,3 Marc Schuckit,4 Laura Almasy,5 Jay Tischfield,6 Bernice Porjesz,7 Henri Begleiter,7 John Nurnberger Jr.,8 Xiaoling Xuei,8 Howard J. Edenberg,8 and Tatiana Foroud8 Received Apr. 28 2005—Final Dec. 22 2005 We use findings from the behavior genetics literature about how genetic factors (latently) influence alcohol dependence and related disorders to develop and test hypotheses about the risk associated with a specific gene, GABRA2, across different developmental stages. This gene has previously been associated with adult alcohol dependence in the Collaborative Study of the Genetics of Alcoholism (COGA) sample [Edenberg, H. J., Dick, D. M., Xuei, X., Tian, H., Almasy, L., Bauer, L. O., Crowe, R., Goate, A., Hesselbrock, V., Jones, K. A., Kwon, J., Li, T. K., Nurnberger Jr., J. I., OÕConnor, S. J., Reich, T., Rice, J., Schuckit, M., Porjesz, B., Foroud, T., and Begleiter, H. (2004). Am. J. Hum. Genet. 74:705–714] and other studies [Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M., and Kranzler, H. R. (2004). Am. J. Med. Genet. B Neuropsychiatr. Genet. 129B:104–109; Lappalainen, J., Krupitsky, E., Remizov, M., Pchelina, S., Taraskina, A., Zvartau, E., Somberg, L. K., Covault, J., Kranzler, H. R., Krystal, J., and Gelernter, J.
    [Show full text]
  • A Human Stem Cell-Derived Test System for Agents Modifying Neuronal N
    Archives of Toxicology (2021) 95:1703–1722 https://doi.org/10.1007/s00204-021-03024-0 IN VITRO SYSTEMS A human stem cell‑derived test system for agents modifying neuronal 2+ N‑methyl‑D‑aspartate‑type glutamate receptor Ca ‑signalling Stefanie Klima1,2 · Markus Brüll1 · Anna‑Sophie Spreng1,3 · Ilinca Suciu1,3 · Tjalda Falt1 · Jens C. Schwamborn4 · Tanja Waldmann1 · Christiaan Karreman1 · Marcel Leist1,5 Received: 28 October 2020 / Accepted: 4 March 2021 / Published online: 13 March 2021 © The Author(s) 2021 Abstract Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neu- roepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell- derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intra- 2+ cellular free calcium ion concentration ([Ca ]i) were measured by fuorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range.
    [Show full text]
  • Gabaergic Signaling Linked to Autophagy Enhances Host Protection Against Intracellular Bacterial Infections
    ARTICLE DOI: 10.1038/s41467-018-06487-5 OPEN GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections Jin Kyung Kim1,2,3, Yi Sak Kim1,2,3, Hye-Mi Lee1,3, Hyo Sun Jin4, Chiranjivi Neupane 2,5, Sup Kim1,2,3, Sang-Hee Lee6, Jung-Joon Min7, Miwa Sasai8, Jae-Ho Jeong 9,10, Seong-Kyu Choe11, Jin-Man Kim12, Masahiro Yamamoto8, Hyon E. Choy 9,10, Jin Bong Park 2,5 & Eun-Kyeong Jo1,2,3 1234567890():,; Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracel- lular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, sug- gesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection. 1 Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea. 2 Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • The Effect of Chronic Alcohol Abuse on the Benzodiazepine Receptor
    f Ps al o ych rn ia u tr o y J Journal of Psychiatry Shushpanova et al., J Psychiatry 2016, 19:3 DOI: 10.4172/2378-5756.1000365 ISSN: 2378-5756 Research Article OpenOpen Access Access The Effect of Chronic Alcohol Abuse on the Benzodiazepine Receptor System in Various Areas of the Human Brain Shushpanova TV1*, Bokhan NA2, Lebedeva VF2, Solonskii AV1 and Udut VV3 1Department of Clinical Neuroimmunology and Neurobiology, Mental Health Research Institute, Russia 2Department of Addictive Disorders, Mental Health Research Institute, Russia 3Department of Molecular and Clinical Pharmacology, Research Institute of Pharmacology and Regenerative Medicine, Russia Abstract Objective: Alcohol abuse induces neuroadaptive changes in the functioning of neurotransmitter systems in the brain. Decrease of GABAergic neurotransmission found in alcoholics and persons with a high risk of alcohol dependence. Benzodiazepine receptor (BzDR) is allosterical modulatory site on GABA type A receptor complex (GABAAR), that modulate GABAergic function and may be important in mechanisms regulating the excitability of the brain processes involved in the alcohol addiction. The purpose of this study was to investigate the effects of chronic alcohol abuse on the BzDR in various areas of the human brain. Materials and Methods: Investigation of BzDR properties were studied in synaptosomal and mitochondrial membrane fractions from different brain areas of alcohol abused patients and non-alcoholic persons by radioreceptor assay with using selective ligands: [3H] flunitrazepam and [3H] PK-11195. Brain samples obtained at autopsy urgent. In total 126 samples of human brain areas were obtained to study radioreceptor binding, including a study group and control group. Results: Comparative study of kinetic parameters (Kd, Bmax) of [3H] flunitrazepam and [3H] PK-11195 binding with membrane fractions in studding brain samples was showed that affinity of BzDR was decreased and capacity increased in different areas of human brain under influence of alcohol abuse.
    [Show full text]
  • GABA Strikes Down Again in Epilepsy
    57 Editorial Page 1 of 12 GABA strikes down again in epilepsy Milena Guazzi, Pasquale Striano Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, “G. Gaslini” Institute, Genova, Italy Correspondence to: Pasquale Striano, MD, PhD. Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, “G. Gaslini” Institute, Genova, Italy. Email: [email protected]. Provenance: This is an invited Editorial commissioned by Section Editor Zhangyu Zou, MD, PhD (Department of Neurology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China). Comment on: Butler KM, Moody OA, Schuler E, et al. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early- onset epilepsy. Brain 2018. [Epub ahead of print]. Submitted Dec 03, 2018. Accepted for publication Dec 24, 2018. doi: 10.21037/atm.2018.12.55 View this article at: http://dx.doi.org/10.21037/atm.2018.12.55 Disruption of GABA transmission has been associated established epilepsy genes, supporting the link common and with different epilepsy syndromes according to the role rare, severe epilepsies. Moreover, this case-control exome of GABA as the major inhibitory neurotransmitter in the sequencing study revealed an excess of missense variants in central nervous system (CNS) (1). In fact, mutations in genes encoding GABAA receptor subunits through in GGE several genes encoding GABA receptor subunits, including patients and functional assessment of some of these variants GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and showed loss-of-function mechanism for 4 out of 7 GABRB2 GABRD have been identified in patients ranging from and GABRA5 variants.
    [Show full text]
  • Reductions in Midbrain Gabaergic and Dopamine Neuron Markers Are Linked in Schizophrenia Tertia D
    Purves‑Tyson et al. Mol Brain (2021) 14:96 https://doi.org/10.1186/s13041‑021‑00805‑7 RESEARCH Open Access Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia Tertia D. Purves‑Tyson1,2*† , Amelia M. Brown1†, Christin Weissleder1, Debora A. Rothmond1 and Cynthia Shannon Weickert1,2,3* Abstract Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre‑ and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmis‑ sion may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA‑related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophre‑ nia cases with high levels of neuroinfammation. Eight GABAergic‑related transcripts were measured with quantita‑ tive PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post‑mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and infammatory subgroups (as previously defned by higher levels of four pro‑infammatory cytokine transcripts). We found reductions (21 – 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT ), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expres‑ sion of somatostatin (SST) was unchanged (p 0.485).
    [Show full text]
  • Structural Analysis of Pathogenic Missense Mutations in GABRA2 and Identification of a Novel De Novo Variant in the Desensitization Gate
    Received: 22 October 2019 | Revised: 29 November 2019 | Accepted: 10 December 2019 DOI: 10.1002/mgg3.1106 ORIGINAL ARTICLE Structural analysis of pathogenic missense mutations in GABRA2 and identification of a novel de novo variant in the desensitization gate Alba Sanchis-Juan1,2 | Marcia A. Hasenahuer3,4 | James A. Baker3 | Amy McTague5 | Katy Barwick5 | Manju A. Kurian5 | Sofia T. Duarte6 | NIHR BioResource | Keren J. Carss1,2 | Janet Thornton3 | F. Lucy Raymond2,4 1Department of Haematology, University of Cambridge, NHS Blood and Transplant Abstract Centre, Cambridge, UK Background: Cys-loop receptors control neuronal excitability in the brain and their 2NIHR BioResource, Cambridge dysfunction results in numerous neurological disorders. Recently, six missense vari- University Hospitals NHS Foundation ants in GABRA2, a member of this family, have been associated with early infantile Trust, Cambridge Biomedical Campus, Cambridge, UK epileptic encephalopathy (EIEE). We identified a novel de novo missense variant 3European Molecular Biology Laboratory, in GABRA2 in a patient with EIEE and performed protein structural analysis of the European Bioinformatics Institute, seven variants. Wellcome Genome Campus, Hinxton, . Cambridge, UK Methods: The novel variant was identified by trio whole-genome sequencing We 4Department of Medical Genetics, performed protein structural analysis of the seven variants, and compared them to Cambridge Institute for Medical Research, previously reported pathogenic mutations at equivalent positions in other Cys-loop University of Cambridge, Cambridge, UK receptors. Additionally, we studied the distribution of disease-associated variants in 5Developmental Neurosciences, Great the transmembrane helices of these proteins. Ormond Street Institute of Child Health, University College London, London, UK Results: The seven variants are in the transmembrane domain, either close to the de- 6Hospital Dona Estefânia, Centro Hospitalar sensitization gate, the activation gate, or in inter-subunit interfaces.
    [Show full text]