Fish Passage Planning and Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environment Agency
Coarse Fish Migration Occurrence, Causes and Implications Research and Development Technical Report WI52 ENVIRONMENT AGENCY All pulps used in production of this paper is sourced from sustainable managed forests and are elemental chlorine free and wood free Coarse Fish Migration Occurrence, Causes and: Implications: Technical Report W 152.. MC Lucas (1): T J Thorn (l), A Duncan (2), 0 Slavik (3) (1) Department of Biological Sciences, University of Durham (2) Royal Holloway. Institute of Environmental Research, University-of London (3) Water Research Institute, Prague Research Contractor:. University of Durham Further copies of thii report are available from: Environment Agency R&D Dissemination Centre, c/o WRc, Frankland Road, Swindon, Wilts SN5 SYF ? WC tel: 01793-865000 fax: 01793-514562 e-mail: [email protected] Publishing Organisation: Environment Agency Rio House Waterside Drive Aztec West Almondsbury Bristol BS32 4UD Tel: 01454 624400 Fax: 01454 624409 ISBNNW-06/98-65-B-BCOA 0 Environment Agency 1998 All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,. photocopying, recording or otherwise without the prior permission of the Environment Agency. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servant or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein. Dissemination status Internal: Released to Regions External: Released to the Public Domain Statement of use This report summarises the findings of aliterature reveiw of the occurrence, causes and implications of coarse fish migration in UK rivers. -
The Biology of Fish Migration
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Fish Physiology: From Genome to Environment, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Binder T.R., Cooke S.J., and Hinch S.G. (2011) The Biology of Fish Migration. In: Farrell A.P., (ed.), Encyclopedia of Fish Physiology: From Genome to Environment, volume 3, pp. 1921–1927. San Diego: Academic Press. ª 2011 Elsevier Inc. All rights reserved. Author's personal copy PHYSIOLOGICAL SPECIALIZATIONS OF DIFFERENT FISH GROUPS Fish Migrations Contents The Biology of Fish Migration Tracking Oceanic Fish Eel Migrations Pacific Salmon Migration: Completing the Cycle The Biology of Fish Migration TR Binder, Hammond Bay Biological Station, Millersburg, MI, USA SJ Cooke, Carleton University, Ottawa, ON, Canada SG Hinch, University of British Columbia, Vancouver, BC, Canada ª 2011 Elsevier Inc. All rights reserved. What is Migration? Environmental Factors That Influence Migration Classifying Migrations Anthropogenic Impacts on Migration Orientation and Navigation Further Reading Energetics of Migration Glossary Fluvial Relating to a river, stream, or other flowing Amphidromy An uncommon subcategory of water. -
The Influence of Light on the Diel Vertical Migration of Young-Of-The-Year Burbot Lota Lota in Lake Constance
The influence of light on the diel vertical migration of young-of-the-year burbot Lota lota in Lake Constance W. N. PROBST* AND R. ECKMANN Limnological Institute, University of Konstanz, 78457 Konstanz, Germany (Received 14 May 2008, Accepted 6 October 2008) The diel vertical distribution of young-of-the-year (YOY) burbot Lota lota in the pelagic zone of Lake Constance was compared to light intensity at the surface and to the light intensity at their mean depth. Lota lota larvae inhabited the pelagic zone of Lake Constance from the beginning of May until the end of August. From early June, after the stratification of the water column, fish performed diel vertical migrations (DVM) between the hypolimnion and epilimnion. The amplitude of DVM increased constantly during the summer and reached 70 m by the end of August. Lota lota started their ascent to the surface after sunset and descended into the hypolimnion after sunrise. As the YOY fish grew from May to August, they experienced decreasing diel maximum light intensities: in May and early June L. lota spent the day at light intensities >40 W mÀ2, but they never experienced light intensities >0Á1WmÀ2 after the end of June. From this time, L. lota experienced the brightest light intensities during dusk and dawn, suggesting feeding opportunities at crepuscular hours. The present study implies, that YOY L. lota in the pelagic zone of Lake Constance increased their DVM amplitude during the summer to counteract a perceived predation risk related to body size and pigmentation. Key words: gadoid; hydroacoustics; larvae; ontogeny; pelagic; predator evasion. -
A Simple Game-Theoretic Model for Upstream Fish Migration
Theory Biosci. DOI 10.1007/s12064-017-0244-3 ORIGINAL PAPER A simple game-theoretic model for upstream fish migration Hidekazu Yoshioka1 Received: 28 December 2016 / Accepted: 25 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract A simple game-theoretic model for upstream fish modulators of biochemical processes, and transport vectors migration, which is a key element in life history of (Winemiller and Jepsen 1998; Flecker et al. 2010). In diadromous fishes, is proposed. Foundation of the model is addition, many of them are economically and culturally a minimization problem on the cost of migration with the valuable fishery resources. Both their abundance and swimming speed and school size as the variables to be diversity have been highly affected by loss and degradation simultaneously optimized. Finding the optimizer ultimately of habitats and migration routes (Guse et al. 2015; Logez reduces to solving a self-consistency equation without et al. 2013; Radinger and Wolter 2015). Physical barriers, explicit solutions. Mathematical analytical results lead to such as dams and weirs, are the major factors that fragment the sufficient condition that the self-consistency equation habitats and migration routes of fish (Jager et al. 2015;Yu has a unique solution, which turns out to be identified with and Xu 2016). Analyzing fish migration has, therefore, the condition where the unique optimizer exists. Behavior been a key topic in current biological and ecological of the optimizer is analyzed both mathematically and research areas (Becker et al. 2015; Wang et al. 2012; White numerically to show its biophysical and ecological conse- et al. -
Modeling and Simulations of the Migration of Pelagic Fish
Modeling and Simulations of the Migration of Pelagic Fish Alethea Barbaroy{ Baldvin Einarssonyz{ Björn Birniryz{ Sven Sigurðssonz Héðinn Valdimarsson§ Ólafur Karvel Pálsson§ Sveinn Sveinbjörnsson§ Þorsteinn Sigurðsson§ June 16, 2008 Abstract We model the spawning migration of the Icelandic capelin stock using an interacting particle model with added environmental fields. Without an artificial forcing terms or a homing instinct, we qualitatively reproduce several observed spawning migrations using available temperature data and approximated cur- rents. The simulations include orders of magnitude more particles than many similar models, affecting the global behaviour of the system. Without environmental fields, we discuss how various parameters scale with respect to one another. In particular, we present scaling behaviour between the size of the time step, radii of the sensory zones and the number of particles in the system. We then discuss how environmental data are incorporated into the model. y Department of Mathematics, University of California, Santa Barbara, USA. z Department of Mathematics, University of Iceland, Reykjavík, Iceland. z Department of Computer Science, University of Iceland, Reykjavík, Iceland. § Marine Research Institute of Iceland. { Center for Complex and Nonlinear Science, University of California, Santa Barbara, USA. Keywords: Collective motion, Fish migration, Icelandic capelin (Mallotus villosus), Interacting particle model. Corresponding author: Baldvin Einarssson, [email protected] 1 Introduction take can be observed, as can the approximate tim- ing, the surrounding environment and other char- acteristic factors. There are year-to-year variations Many species of marine animals travel great dis- which could be influenced by a number of variables tances between feeding and spawning grounds, in- including temperature and other environmental fac- cluding pelagic species of fish like the capelin (Mal- tors such as food density, salinity, bottom topography lotus villosus) and herring (Clupea harengus) (Vil- and oceanic currents. -
IR 425 Sampling and Design Options for Monitoring Freshwater Fish
internal report 425 Sampling and design options for monitoring freshwater fish: Potential strategies for the Darwin Harbour catchment B Pidgeon June 2003 supervising scientist Sampling and design options for monitoring freshwater fish: potential strategies for the Darwin Harbour catchment Bob Pidgeon Environmental Research Institute of the Supervising Scientist Darwin Supervising Scientist This talk was presented to the Department of Infrastructure, Planning and Environment, Water Monitoring Branch, in May 2003. It deals with the options for monitoring of freshwater fish in the Darwin Harbour catchment as part of a comprehensive environmental management program for Darwin Harbour being planned by DIPE. It accompanies a report prepared as part of a consultancy by the Environmental Research Institute of the Supervising Scientist to the Department of Infrastructure, Planning and Environment, June 2003. 1 Background • Plans by DIPE to begin monitoring freshwater fish as part of a comprehensive environmental management strategies for Darwin Harbour catchment • Why monitor fish? – Important role in determining structure of aquatic ecosystems – Sensitive to pollution, habitat change and altered hydrology – useful indicators of ecosystem health – High profile of conservation of biodiversity and food and recreation values – Concerns about contamination and human health Supervising Scientist Freshwater fish monitoring in the NT • Not widespread • Most extensive studies are in relation to uranium mining: – in Magela Creek & South Alligator River -Ranger mine; – Finnis River - Rum Jungle mine • Taxonomy is now well known and basic biology and ecology known for many species – good basis for use in monitoring and assessment* • Fisheries research focused on barramundi *The research on fish ecology and reproductive biology by the Office of the Supervising Scientist in 1978-79 (Bishop et al 1986, 1990 & 2002) provides a good basis for the evaluation of impacts on freshwater fish that might be detected in monitoring programs. -
Life History Patterns and Biogeography: An
LIFE HISTORY PATTERNS AND Lynne R. Parenti2 BIOGEOGRAPHY: AN INTERPRETATION OF DIADROMY IN FISHES1 ABSTRACT Diadromy, broadly defined here as the regular movement between freshwater and marine habitats at some time during their lives, characterizes numerous fish and invertebrate taxa. Explanations for the evolution of diadromy have focused on ecological requirements of individual taxa, rarely reflecting a comparative, phylogenetic component. When incorporated into phylogenetic studies, center of origin hypotheses have been used to infer dispersal routes. The occurrence and distribution of diadromy throughout fish (aquatic non-tetrapod vertebrate) phylogeny are used here to interpret the evolution of this life history pattern and demonstrate the relationship between life history and ecology in cladistic biogeography. Cladistic biogeography has been mischaracterized as rejecting ecology. On the contrary, cladistic biogeography has been explicit in interpreting ecology or life history patterns within the broader framework of phylogenetic patterns. Today, in inferred ancient life history patterns, such as diadromy, we see remnants of previously broader distribution patterns, such as antitropicality or bipolarity, that spanned both marine and freshwater habitats. Biogeographic regions that span ocean basins and incorporate ocean margins better explain the relationship among diadromy, its evolution, and its distribution than do biogeographic regions centered on continents. Key words: Antitropical distributions, biogeography, diadromy, eels, -
Nursery Delineation, Movement Patterns, and Migration of the Sandbar Shark, Carcharhinus Plumbeus, in the Eastern Shore of Virginia Coastal Bays and Lagoons
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 Nursery delineation, movement patterns, and migration of the sandbar shark, Carcharhinus plumbeus, in the eastern shore of Virginia coastal bays and lagoons Christina L. Conrath College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Marine Biology Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Conrath, Christina L., "Nursery delineation, movement patterns, and migration of the sandbar shark, Carcharhinus plumbeus, in the eastern shore of Virginia coastal bays and lagoons" (2005). Dissertations, Theses, and Masters Projects. Paper 1539616618. https://dx.doi.org/doi:10.25773/v5-tgsx-ea94 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. NURSERY DELINEATION, MOVEMENT PATTERNS, AND MIGRATION OF THE SANDBAR SHARK, Carcharhinus plumbeus, IN THE EASTERN SHORE OF VIRGINIA COASTAL BAYS AND LAGOONS A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Christina L. Conrath 2005 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted in partial fulfillment of The requirements for the degree of Doctor of Philosophy g>-~ Approved, December 2005 Musick,vPh.D. -
Migration and Habitat Utilization in Lamnid Sharks
MIGRATION AND HABITAT UTILIZATION IN LAMNID SHARKS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Kevin Chi-Ming Weng May 2007 © Copyright by Kevin Chi-Ming Weng 2007 All Rights Reserved ii Abstract Understanding the movements, habitat utilization, and life history of high trophic level animals is essential to understanding how ecosystems function. Furthermore, large pelagic vertebrates, including sharks, are declining globally, yet the movements and habitats of most species are unknown. A variety of satellite telemetry techniques are used to elucidate the movements and habitat utilization of two species of lamnid shark. Salmon sharks used a subarctic to subtropical niche, and undertook long distance seasonal migrations between subarctic and subtropical regions of the eastern North Pacific, exhibiting the greatest focal area behavior in the rich neritic waters off Alaska and California, and showing more transitory behaviors in pelagic waters where productivity is lower. The timing of salmon shark aggregations in both Alaska and California waters appears to correspond with life history events of an important group of prey species, Pacific salmon. The enhanced expression of excitation-contraction coupling proteins in salmon shark hearts likely underlies its ability to maintain heart function at cold temperatures and their niche expansion into subarctic seas. Adult white sharks undertake long distance seasonal migrations from the coast of California to an offshore focal area 2500 km west of the Baja Peninsula, as well as Hawaii. A full migration cycle from the coast to the offshore focal area and back was documented. -
NO. 306 Life-Cycle Spatial Patterns of Small Pelagic Fish in the Northeast Atlantic
ICES COOPERATIVE RESEARCH REPORT RAPPORT DES RECHERCHES COLLECTIVES NO. 306 OCTOBER 2010 Life-cycle spatial patterns of small pelagic fish in the Northeast Atlantic Editor Pierre Petitgas Authors Jürgen Alheit ● Douglas Beare ● Miguel Bernal Michele Casini ● Maurice Clarke ● Unaï Cotano Mark Dickey-Collas ● Leonie Dransfeld ● Clementine Harma Mikko Heino ● Jacques Massé ● Christian Möllmann Enrique Nogueira ● Pierre Petitgas ● David Reid Alexandra Silva ● Georg Skaret ● Aril Slotte Yorgos Stratoudakis ● Andrés Uriarte ● Rüdiger Voss International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44 – 46 DK‐1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Petitgas, P. (Ed.) 2010. Life cycle spatial patterns of small pelagic fish in the Northeast Atlantic. ICES Cooperative Research Report No. 306. 93 pp. Series Editor: Emory D. Anderson For permission to reproduce material from this publication, please apply to the General Secretary. This document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. ISBN 978‐87‐7482‐081‐9 ISSN 1017 – 6195 © 2010 International Council for the Exploration of the Sea ICES Cooperative Research Report No. 306 | i Contents 1 Introduction....................................................................................................................1 -
Pisces: Terapontidae) with Particular Reference to Ontogeny and Phylogeny
ResearchOnline@JCU This file is part of the following reference: Davis, Aaron Marshall (2012) Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/27673/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/27673/ Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny PhD thesis submitted by Aaron Marshall Davis BSc, MAppSci, James Cook University in August 2012 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University 1 2 Statement on the contribution of others Supervision was provided by Professor Richard Pearson (James Cook University) and Dr Brad Pusey (Griffith University). This thesis also includes some collaborative work. While undertaking this collaboration I was responsible for project conceptualisation, laboratory and data analysis and synthesis of results into a publishable format. Dr Peter Unmack provided the raw phylogenetic trees analysed in Chapters 6 and 7. Peter Unmack, Tim Jardine, David Morgan, Damien Burrows, Colton Perna, Melanie Blanchette and Dean Thorburn all provided a range of editorial advice, specimen provision, technical instruction and contributed to publications associated with this thesis. Greg Nelson-White, Pia Harkness and Adella Edwards helped compile maps. The project was funded by Internal Research Allocation and Graduate Research Scheme grants from the School of Marine and Tropical Biology, James Cook University (JCU). -
Internal Wave-Mediated Shading Causes Frequent Vertical Migrations in Fishes
Vol. 452: 1–10, 2012 MARINE ECOLOGY PROGRESS SERIES Published April 25 doi: 10.3354/meps09688 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Internal wave-mediated shading causes frequent vertical migrations in fishes Stein Kaartvedt1,2,*, Thor A. Klevjer1,2, Dag L. Aksnes3 1King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia 2Department of Biology, University of Oslo, 0316 Oslo, Norway 3Department of Biology, University of Bergen, 5020 Bergen, Norway ABSTRACT: We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of fish created an overlapping zone. Near-bottom fish correspond- ingly left the benthic boundary zone at the wave trough, ascending into an acoustic scattering layer likely consisting of zooplankton and then descend- ing to the benthic boundary zone at the wave crest. We suggest that this vertical fish migration is a response to fluctuations in light intensity of 3 to Pelagic and demersal fishes undertake vertical migrations in response to internal waves, as these cause changes in light 4 orders of magnitude caused by shading from a penetration through the turbid surface layer of the sea. turbid surface layer that had chlorophyll a values of 3 to 4 mg m−3 and varied in thickness from ~15 Illustration: Hege Vestheim to 50 m at a temporal scale corresponding to the internal wave period (30 min).