Migration and Habitat Utilization in Lamnid Sharks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitsukurina Owstoni Jordan (Chondrichthyes: Mitsukurinidae) Primer Registro Para El Caribe Colombiano
Bol . Invest . Mar . Cost . 38 (1) 211-215 ISSN 0122-9761 Santa Marta, Colombia, 2009 NOTA: MITSUKURINA OWSTONI JORDAN (CHONDRICHTHYES: MITSUKURINIDAE) PRIMER REGISTRO PARA EL CARIBE COLOMBIANO Marcela Grijalba-Bendeck y Kelly Acevedo Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales, Programa de Biología Marina, Sede Santa Marta, Colombia. [email protected] (M.G.B.), [email protected] (K. A.) ABSTRACT Mitsukurina owstoni Jordan (Chondrichthyes: Mitsukurinidae) first record for the Colombian Caribbean . This paper collects bibliographic information about the Goblin shark, Mitsukurina owstoni (Chondrichthyes: Mitsukurinidae), an uncommon shark from deeper waters . One specimen of this species was captured near Nenguange bay and it is recorded for first time in the Colombian Caribbbean. KEY WORDS: Mitsukurinidae, Mitsukurina owstoni, Goblin shark, Caribbean, Colombia . La pesca artesanal es una herramienta valiosa que ocasionalmente brinda aportes fundamentales al conocimiento en cuanto a biodiversidad de las especies existentes para un lugar, con el hallazgo de ejemplares no registrados a nivel científico, los nuevos aportes son un llamado a la necesidad de monitorear la pesca artesanal de forma constante, con especial atención a los recursos que no representan valor comercial y pueden dar información de lugares no muestreados por otras fuentes . Siendo un ejemplo de ello el tiburón duende, que es una especie oceánica de aguas profundas, con escasas y dispersas capturas a nivel mundial, esta especie de la cual se sabe muy poco de su biología, no había sido registrada antes para el Caribe colombiano, siendo un ejemplar raro incluso para los pescadores artesanales de la zona . Por lo anterior, el objetivo de esta nota es registrar la presencia de M. -
Environment Agency
Coarse Fish Migration Occurrence, Causes and Implications Research and Development Technical Report WI52 ENVIRONMENT AGENCY All pulps used in production of this paper is sourced from sustainable managed forests and are elemental chlorine free and wood free Coarse Fish Migration Occurrence, Causes and: Implications: Technical Report W 152.. MC Lucas (1): T J Thorn (l), A Duncan (2), 0 Slavik (3) (1) Department of Biological Sciences, University of Durham (2) Royal Holloway. Institute of Environmental Research, University-of London (3) Water Research Institute, Prague Research Contractor:. University of Durham Further copies of thii report are available from: Environment Agency R&D Dissemination Centre, c/o WRc, Frankland Road, Swindon, Wilts SN5 SYF ? WC tel: 01793-865000 fax: 01793-514562 e-mail: [email protected] Publishing Organisation: Environment Agency Rio House Waterside Drive Aztec West Almondsbury Bristol BS32 4UD Tel: 01454 624400 Fax: 01454 624409 ISBNNW-06/98-65-B-BCOA 0 Environment Agency 1998 All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,. photocopying, recording or otherwise without the prior permission of the Environment Agency. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servant or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein. Dissemination status Internal: Released to Regions External: Released to the Public Domain Statement of use This report summarises the findings of aliterature reveiw of the occurrence, causes and implications of coarse fish migration in UK rivers. -
Sizing Ocean Giants: Patterns of Intraspecific Size Variation in Marine Megafauna
Sizing ocean giants: patterns of intraspecific size variation in marine megafauna Craig R. McClain1,2 , Meghan A. Balk3, Mark C. Benfield4, Trevor A. Branch5, Catherine Chen2, James Cosgrove6, Alistair D.M. Dove7, Lindsay C. Gaskins2, Rebecca R. Helm8, Frederick G. Hochberg9, Frank B. Lee2, Andrea Marshall10, Steven E. McMurray11, Caroline Schanche2, Shane N. Stone2 and Andrew D. Thaler12 1 National Evolutionary Synthesis Center, Durham, NC, USA 2 Department of Biology, Duke University, Durham, NC, USA 3 Department of Biology, University of New Mexico, Albuquerque, NM, USA 4 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA 5 School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA 6 Natural History Section, Royal British Columbia Museum, Victoria, BC, Canada 7 Georgia Aquarium, Atlanta, GA, USA 8 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA 9 Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, Santa Barbara, CA, USA 10 Marine Megafauna Foundation, Truckee, CA, USA 11 Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA 12 Blackbeard Biologic: Science and Environmental Advisors, Vallejo, CA, USA ABSTRACT What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a diYcult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements diYcult. Inaccurate reports of maximum sizes run rampant through the scientific Submitted 3 October 2014 literature and popular media. -
Electrosensory Pore Distribution and Feeding in the Basking Shark Cetorhinus Maximus (Lamniformes: Cetorhinidae)
Vol. 12: 33–36, 2011 AQUATIC BIOLOGY Published online March 3 doi: 10.3354/ab00328 Aquat Biol NOTE Electrosensory pore distribution and feeding in the basking shark Cetorhinus maximus (Lamniformes: Cetorhinidae) Ryan M. Kempster*, Shaun P. Collin The UWA Oceans Institute and the School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia ABSTRACT: The basking shark Cetorhinus maximus is the second largest fish in the world, attaining lengths of up to 10 m. Very little is known of its sensory biology, particularly in relation to its feeding behaviour. We describe the abundance and distribution of ampullary pores over the head and pro- pose that both the spacing and orientation of electrosensory pores enables C. maximus to use passive electroreception to track the diel vertical migrations of zooplankton that enable the shark to meet the energetic costs of ram filter feeding. KEY WORDS: Ampullae of Lorenzini · Electroreception · Filter feeding · Basking shark Resale or republication not permitted without written consent of the publisher INTRODUCTION shark Rhincodon typus and the megamouth shark Megachasma pelagios, which can attain lengths of up Electroreception is an ancient sensory modality that to 14 and 6 m, respectively (Compagno 1984). These 3 has evolved independently across the animal kingdom filter-feeding sharks are among the largest living in multiple groups (Scheich et al. 1986, Collin & White- marine vertebrates (Compagno 1984) and yet they are head 2004). Repeated independent evolution of elec- all able to meet their energetic costs through the con- troreception emphasises the importance of this sense sumption of tiny zooplankton. -
Order LAMNIFORMES ODONTASPIDIDAE Sand Tiger Sharks Iagnostic Characters: Large Sharks
click for previous page Lamniformes: Odontaspididae 419 Order LAMNIFORMES ODONTASPIDIDAE Sand tiger sharks iagnostic characters: Large sharks. Head with 5 medium-sized gill slits, all in front of pectoral-fin bases, Dtheir upper ends not extending onto dorsal surface of head; eyes small or moderately large, with- out nictitating eyelids; no nasal barbels or nasoral grooves; snout conical or moderately depressed, not blade-like;mouth very long and angular, extending well behind eyes when jaws are not protruded;lower labial furrows present at mouth corners; anterior teeth enlarged, with long, narrow, sharp-edged but unserrated cusps and small basal cusplets (absent in young of at least 1 species), the upper anteriors separated from the laterals by a gap and tiny intermediate teeth; gill arches without rakers; spiracles present but very small. Two moderately large high dorsal fins, the first dorsal fin originating well in advance of the pelvic fins, the second dorsal fin as large as or somewhat smaller than the first dorsal fin;anal fin as large as second dorsal fin or slightly smaller; caudal fin short, asymmetrical, with a strong subterminal notch and a short but well marked ventral lobe. Caudal peduncle not depressed, without keels; a deep upper precaudal pit present but no lower pit. Intestinal valve of ring type, with turns closely packed like a stack of washers. Colour: grey or grey-brown to blackish above, blackish to light grey or white, with round or oval dark spots and blotches vari- ably present on 2 species. high dorsal fins upper precaudal eyes without pit present nictitating eyelids intestinal valve of ring type Habitat, biology, and fisheries: Wide-ranging, tropical to cool-temperate sharks, found inshore and down to moderate depths on the edge of the continental shelves and around some oceanic islands, and in the open ocean. -
The Biology of Fish Migration
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Fish Physiology: From Genome to Environment, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Binder T.R., Cooke S.J., and Hinch S.G. (2011) The Biology of Fish Migration. In: Farrell A.P., (ed.), Encyclopedia of Fish Physiology: From Genome to Environment, volume 3, pp. 1921–1927. San Diego: Academic Press. ª 2011 Elsevier Inc. All rights reserved. Author's personal copy PHYSIOLOGICAL SPECIALIZATIONS OF DIFFERENT FISH GROUPS Fish Migrations Contents The Biology of Fish Migration Tracking Oceanic Fish Eel Migrations Pacific Salmon Migration: Completing the Cycle The Biology of Fish Migration TR Binder, Hammond Bay Biological Station, Millersburg, MI, USA SJ Cooke, Carleton University, Ottawa, ON, Canada SG Hinch, University of British Columbia, Vancouver, BC, Canada ª 2011 Elsevier Inc. All rights reserved. What is Migration? Environmental Factors That Influence Migration Classifying Migrations Anthropogenic Impacts on Migration Orientation and Navigation Further Reading Energetics of Migration Glossary Fluvial Relating to a river, stream, or other flowing Amphidromy An uncommon subcategory of water. -
Identification Guide to the Deep-Sea Cartilaginous Fishes Of
Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught. -
The Influence of Light on the Diel Vertical Migration of Young-Of-The-Year Burbot Lota Lota in Lake Constance
The influence of light on the diel vertical migration of young-of-the-year burbot Lota lota in Lake Constance W. N. PROBST* AND R. ECKMANN Limnological Institute, University of Konstanz, 78457 Konstanz, Germany (Received 14 May 2008, Accepted 6 October 2008) The diel vertical distribution of young-of-the-year (YOY) burbot Lota lota in the pelagic zone of Lake Constance was compared to light intensity at the surface and to the light intensity at their mean depth. Lota lota larvae inhabited the pelagic zone of Lake Constance from the beginning of May until the end of August. From early June, after the stratification of the water column, fish performed diel vertical migrations (DVM) between the hypolimnion and epilimnion. The amplitude of DVM increased constantly during the summer and reached 70 m by the end of August. Lota lota started their ascent to the surface after sunset and descended into the hypolimnion after sunrise. As the YOY fish grew from May to August, they experienced decreasing diel maximum light intensities: in May and early June L. lota spent the day at light intensities >40 W mÀ2, but they never experienced light intensities >0Á1WmÀ2 after the end of June. From this time, L. lota experienced the brightest light intensities during dusk and dawn, suggesting feeding opportunities at crepuscular hours. The present study implies, that YOY L. lota in the pelagic zone of Lake Constance increased their DVM amplitude during the summer to counteract a perceived predation risk related to body size and pigmentation. Key words: gadoid; hydroacoustics; larvae; ontogeny; pelagic; predator evasion. -
Thermoregulation Strategies of Deep Diving Ectothermic Sharks
THERMOREGULATION STRATEGIES OF DEEP DIVING ECTOTHERMIC SHARKS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCOTOR OF PHILOSOPHY IN ZOOLOGY (MARINE BIOLOGY) AUGUST 2020 By. Mark A. Royer Dissertation Committee: Kim Holland, Chairperson Brian Bowen Carl Meyer Andre Seale Masato Yoshizawa Keywords: Ectothermic, Thermoregulation, Biologging, Hexanchus griseus, Syphrna lewini, Shark ACKNOWLEDGEMENTS Thank you to my advisor Dr. Kim Holland and to Dr. Carl Meyer for providing me the privilege to pursue a doctoral degree in your lab, which provided more experiences and opportunities than I could have ever imagined. The research environment you provided allowed me to pursue new frontiers in the field and take on challenging questions. Thank you to my committee members Dr. Brian Bowen, Dr. Andre Seale, and Dr. Masato Yoshizawa, for providing your ideas, thoughts, suggestions, support and encouragement through the development of my dissertation. I would like to give my sincere thanks to all of my committee members and to the Department of Biology for taking their time to provide their support and accommodation as I finished my degree during a rather unprecedented and uncertain time. I am very grateful to everyone at the HIMB Shark Lab including Dr. Melanie Hutchinson, Dr. James Anderson, Jeff Muir, and Dr. Daniel Coffey. I learned so much from all of you and we have shared several lifetimes worth of experiences. Thank you to Dr. James Anderson for exciting side projects we have attempted and will continue to pursue in the future. Thank you to Dr. -
A Simple Game-Theoretic Model for Upstream Fish Migration
Theory Biosci. DOI 10.1007/s12064-017-0244-3 ORIGINAL PAPER A simple game-theoretic model for upstream fish migration Hidekazu Yoshioka1 Received: 28 December 2016 / Accepted: 25 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract A simple game-theoretic model for upstream fish modulators of biochemical processes, and transport vectors migration, which is a key element in life history of (Winemiller and Jepsen 1998; Flecker et al. 2010). In diadromous fishes, is proposed. Foundation of the model is addition, many of them are economically and culturally a minimization problem on the cost of migration with the valuable fishery resources. Both their abundance and swimming speed and school size as the variables to be diversity have been highly affected by loss and degradation simultaneously optimized. Finding the optimizer ultimately of habitats and migration routes (Guse et al. 2015; Logez reduces to solving a self-consistency equation without et al. 2013; Radinger and Wolter 2015). Physical barriers, explicit solutions. Mathematical analytical results lead to such as dams and weirs, are the major factors that fragment the sufficient condition that the self-consistency equation habitats and migration routes of fish (Jager et al. 2015;Yu has a unique solution, which turns out to be identified with and Xu 2016). Analyzing fish migration has, therefore, the condition where the unique optimizer exists. Behavior been a key topic in current biological and ecological of the optimizer is analyzed both mathematically and research areas (Becker et al. 2015; Wang et al. 2012; White numerically to show its biophysical and ecological conse- et al. -
A Partial Rostrum of the Porbeagle Shark
GEOLOGICA BELGICA (2010) 13/1-2: 61-76 A PARTIAL ROSTRUM OF THE PORBEAGLE SHARK LAMNA NASUS (LAMNIFORMES, LAMNIDAE) FROM THE MIOCENE OF THE NORTH SEA BASIN AND THE TAXONOMIC IMPORTANCE OF ROSTRAL MORPHOLOGY IN EXTINCT SHARKS Frederik H. MOLLEN (4 figures, 3 plates) Elasmobranch Research, Meistraat 16, B-2590 Berlaar, Belgium; E-mail: [email protected] ABSTRACT. A fragmentary rostrum of a lamnid shark is recorded from the upper Miocene Breda Formation at Liessel (Noord-Brabant, The Netherlands); it constitutes the first elasmobranch rostral process to be described from Neogene strata in the North Sea Basin. Based on key features of extant lamniform rostra and CT scans of chondrocrania of modern Lamnidae, the Liessel specimen is assigned to the porbeagle shark, Lamna nasus (Bonnaterre, 1788). In addition, the taxonomic significance of rostral morphology in extinct sharks is discussed and a preliminary list of elasmobranch taxa from Liessel is presented. KEYWORDS. Lamniformes, Lamnidae, Lamna, rostrum, shark, rostral node, rostral cartilages, CT scans. 1. Introduction Pliocene) of North Carolina (USA), detailed descriptions and discussions were not presented, unfortunately. Only In general, chondrichthyan fish fossilise only under recently has Jerve (2006) reported on an ongoing study of exceptional conditions and (partial) skeletons of especially two Miocene otic capsules from the Calvert Formation large species are extremely rare (Cappetta, 1987). (lower-middle Miocene) of Maryland (USA); this will Therefore, the fossil record of Lamniformes primarily yield additional data to the often ambiguous dental studies. comprises only teeth (see e.g. Agassiz, 1833-1844; These well-preserved cranial structures were stated to be Leriche, 1902, 1905, 1910, 1926), which occasionally are homologous to those seen in extant lamnids and thus available as artificial, associated or natural tooth sets useful for future phylogenetic studies of this group. -
Record of the Goblin Shark Mitsukurina Owstoni (Chondrichthyes
Marine Biodiversity Records, page 1 of 5. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S1755267211000923; Vol. 5; e44; 2012 Published online Record of the goblin shark Mitsukurina owstoni (Chondrichthyes: Lamniformes: Mitsukurinidae) from the south-western Atlantic getulio rincon1, teodoro vaske ju’ nior2 and otto b.f. gadig2 1Conepe-Conselho Nacional de Pesca e Aquicultura, Setor Hoteleiro Sul, Quadra 6, Conj. A, Bloco E, Edifı´cio Brasil 21, Salas 10-13, CEP 70322-915, Brası´lia, Distrito Federal, Brazil, 2UNESP, Campus Experimental do Litoral Paulista, Prac¸a Infante Dom Henrique s/n, CEP 11330-900, Sa˜o Vicente, Sa˜o Paulo, Brazil This paper reports the first well-documented specimen of the goblin shark, Mitsukurina owstoni in the south-western Atlantic, based on a mature male measuring 3152 mm total length, caught on 27 November 2008 off the Rio de Janeiro coast, south- east Brazil. Keywords: goblin shark, Mitsukurina owstoni, occurrence, south-western Atlantic Submitted 26 June 2011; accepted 25 July 2011 INTRODUCTION Colombia (Grijalba-Bendeck & Acevedo, 2009), French Guiana (Uyeno & Sasaki, 1983) and northern Brazil The goblin shark, Mitsukurina owstoni (Jordan, 1898) is the (Holanda & Asano-Filho, 2008). single representative of the family Mitsukurinidae, order Although widely distributed, some available biological and Lamniformes (mackerel sharks), distributed worldwide in distribution data are controversial. For example, the first deep waters down to at least 1300 m and occasionally reaching record from the western North Atlantic, in fact was not that the shallow upper slopes of submarine canyons. It is one of the published by Uyeno et al. (1983), but from Kukuev (1982) most bizarre large sharks known, attaining about 4100 mm who reported nine specimens collected between 1976 and total length, and characterized by its long and well depressed 1978 at Corner Mountains and New England Seamounts.