Sculpin Infograph-Lores-F

Total Page:16

File Type:pdf, Size:1020Kb

Sculpin Infograph-Lores-F SCULPINS Sculpins are small, bottom-dwelling sh that belong to the family Cottidae. There are around 300 species of sculpin. They Are sculpins can be found in both salt water and freshwater, principally in endangered? northern regions of the world. They generally have elongated, Sculpins are numerous and widespread in the wild. They are tapered bodies, usually with wide, heavy heads. not on the list of endangered species. Sculpins are not part of human diet because of their distasteful meat. Species common to Puget Sound How long do sculpins live? Sculpins can survive three to seven Bualo sculpin Cabezon Fluy sculpin Great sculpin years depending on the species. Enophrys bison Scorpaenichthys marmoratus Oligocottus snyderi Myoxocephalus polyacanthocephalus Fascinating fact: During low tide, shallow tide pools are sometimes Grunt sculpin Longn sculpin Manacled sculpin Red Irish Lord Rhamphocottus richardsonii Jordania zonope Synchirus gilli Hemilepidotus hemilepidotus isolated from the churning waves and become hypoxic, meaning they lack sucient oxygen. This is not a problem for tidepool sculpins, because they can emerge partially or completely from the water and breathe air for several hours. Ribbed sculpin Rosylip sculpin Roughback sculpin Sailn sculpin Triglops pingelii Ascelichthys rhodorus Chitonotus pugetensis Nautichthys oculofasciatus What do Silver spotted sculpin Threadn sculpin Tidepool sculpin Blepsias cirrhosus Icelinus lamentosus Oligocottus maculosus sculpins eat? Sculpins are carnivores. Their diets are based on crabs, amphipods, worms and small sh. Who are sculpin predators? Natural enemies of sculpins are large sh, herons, otters and raccoons..
Recommended publications
  • Cottus Poecilopus Heckel, 1836, in the River Javorin- Ka, the Tatra
    Oecologia Montana 2018, Cottus poecilopus Heckel, 1836, in the river Javorin- 27, 21-26 ka, the Tatra mountains, Slovakia M. JANIGA, Jr. In Tatranská Javorina under Muráň mountain, a small fish nursery was built by Christian Kraft von Institute of High Mountain Biology University of Hohenlohe around 1930. The most comprehensive Žilina, Tatranská Javorina 7, SK-059 56, Slovakia; studies on fish from the Tatra mountains were writ- e-mail:: [email protected] ten by professor Václav Dyk (1957; 1961), Dyk and Dyková (1964a,b; 1965), who studied altitudinal distribution of fish, describing the highest points where fish were found. His studies on fish were likely the most complex studies of their kind during that period. Along with his wife Sylvia, who illus- Abstract. This study focuses on the Cottus poe- trated his studies, they published the first realistic cilopus from the river Javorinka in the north-east studies on fish from the Tatra mountains including High Tatra mountains, Slovakia. The movement the river Javorinka (Dyk and Dyková 1964a). Feri- and residence of 75 Alpine bullhead in the river anc (1948) published the first Slovakian nomenclature were monitored and carefully recorded using GPS of fish in 1948. Eugen K. Balon (1964; 1966) was the coordinates. A map representing their location in next famous ichthyologist who became a recognised the river was generated. This data was collected in expert in the fish fauna of the streams of the Tatra the spring and summer of 2016 and in the autumn mountains, the river Poprad, and various high moun- of 2017. Body length and body weight of 67 Alpine tain lakes.
    [Show full text]
  • KLMN Featured Creature Sculpins
    National Park Service Featured Creature U.S. Department of the Interior February 2021 Klamath Network Inventory & Monitoring Division Natural Resources Stewardship & Science Sculpins Cottidae General Description Habitat and Distribution Darting low through tide pools or lurking Sculpins occur in both marine and freshwater in stream bottoms, members of the large habitats of North America, Europe, and Asia, fish family, Cottidae, are commonly called with just a few marine species in the southern USFWS/ROGER TABOR sculpins. They also go by “bullhead” or “sea hemisphere. Most abundant in the North Prickly sculpin (Cottus asper) scorpion,” and even some very unflattering Pacific, they tend to frequent shallow water terms, like “double uglies.” You’re not likely and tide pools. In North American coldwa- to catch one on your fishing line, but if you ter streams, they overlap the same habitat as them to keep them oxygenated until they look carefully into ocean tide pools, you trout and salmon, including small headwater hatch a few weeks later into baby fish, known may spot these well camouflaged creatures streams, lakes, and rocky areas of lowland as fry. The fry will be sexually mature in time moving around the bottom. Most of the more rivers. Freshwater sculpin are sometimes the for the next breeding season. than 250–300 known species in this family are only abundant fish species in streams. Inland marine, though some live in freshwater. species found in Pacific Northwest streams Fun Facts include the riffle sculpin (Cottus gulosus), • Some sculpins are able to compress their Generally, sculpins are bottom-dwelling prickly sculpin (Cottus asper), and coastrange skull bones to fit inside small spaces.
    [Show full text]
  • Cytochemical Features of Olfactory Receptor Cells in Benthic and Pelagic Sculpins (Cottoidei) from Lake Baikal
    Arch Biol Sci. 2016;68(2):345-353 DOI:10.2298/ABS150701026K CYTOCHEMICAL FEATURES OF OLFACTORY RECEPTOR CELLS IN BENTHIC AND PELAGIC SCULPINS (COTTOIDEI) FROM LAKE BAIKAL Igor V. Klimenkov1,2,*, Nikolay P. Sudakov2,3,4, Mikhail V. Pastukhov5 and Nikolay S. Kositsyn6 1 Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033 Russia 2 Irkutsk State University, 1 Karl Marx St., Irkutsk, 664003 Russia 3 Scientific Center for Reconstructive and Restorative Surgery, Siberian Branch, Russian Academy of Medical Sciences, 1 Bortsov Revolyutsii St., Irkutsk, 664003 Russia 4 Irkutsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Lermontov St. 134, Irkutsk, 664033, Russia 5 Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a Favorsky St., Irkutsk, 664033 Russia 6 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova St., Moscow 117485 *Corresponding author: [email protected] Received: July 1, 2015; Revised: August 17, 2015; Accepted: October 6, 2015; Published online: March 21, 2016 Abstract: Electron and laser confocal microscopy were used to analyze the adaptive cytochemical features of the olfactory epithelium in three genetically close deep-water Cottoidei species endemic to Lake Baikal − golomyanka (Baikal oilfish) Comephorus baicalensis, longfin Baikal sculpin Cottocomephorus inermis and fat sculpin Batrachocottus nikolskii − whose foraging strategies are realized under different hydrostatic pressure regimes. Hypobaric hypoxia that developed in B. nikol- skii (a deep-water benthic species) upon delivery to the surface caused distinct destructive changes in cells of the olfactory epithelium. In C. baicalensis and C. inermis, whose foraging behavior involves daily vertical migrations between deep and shallow layers, these cells are characterized by a significantly higher structural and functional stability than in deep-water B.
    [Show full text]
  • Eye Histology of the Tytoona Cave Sculpin: Eye Loss Evolves Slower Than Enhancement of Mandibular Pores in Cavefish?
    McCaffery et al. Eye histology of the Tytoona Cave Sculpin: Eye loss evolves slower than enhancement of mandibular pores in cavefish? Sean McCaffery1, Emily Collins2 and Luis Espinasa3 School of Science, Marist College, 3399 North Rd, Poughkeepsie, New York 12601, USA 1 [email protected] 2 [email protected] [email protected] (corresponding author) Key Words: Cottus bairdi, Cottus cognatus, Cottidae, Scorpaeniformes, Actinopterygii, Tytoona Cave Nature Preserve, Sinking Valley, Blair County, Pennsylvania, troglobite, eye histology, mandibular pore. Despite the presence of caves in northern latitudes above 40–50ºN that would typically be considered suitable environments for cave-adapted fish, stygobiotic fish are absent from these locations (Romero and Paulsen 2001; Proudlove 2001). One factor that likely hindered the distribution of cavefish in these areas was the migration of polar ice sheets during the Wisconsinan Period, which occurred approximately 20,000 years ago. The glaciers covered the majority of the Northern Hemisphere until about 12,000 years ago, making many caves in the region uninhabitable for fish until the period ended (Flint 1971). Presently, the northernmost cave-adapted fish in the world is the Nippenose Cave Sculpin of the Cottus bairdi-cognatus complex (Espinasa and Jeffery 2003) (Actinopterygii: Scorpaeniformes: Cottidae), found at 41º 9’ N, in caves of the Nippenose Valley, in Lycoming County, Central Pennsylvania. In some taxonomic databases and the genetic data repository GenBank, this taxon referred to as Cottus sp. 'Nippenose Valley' (Pennsylvania Grotto Sculpin). Here, we discuss a second population different from Nippenose Cave Sculpin. We refer to this population from Tytoona Cave, Pennsylvania, as the Tytoona Cave Scuplin.
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included
    [Show full text]
  • Occurrence of the Grunt Sculpin (Rhamphocottus Richardsoni) Larvae from Northern Central Japan
    Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.34, No.3 1987 34巻3号1987年 Occurrence of the Grunt Sculpin (Rhamphocottus richardsoni) Larvae from Northern Central Japan Toshiro Saruwatari, Kazuei Betsui and Muneo Okiyama (Received December 15, 1986) While checking shirasu-seine (anchovy larvae seine) samples taken on March 11, 1986, at the mouth of the Kuji River, Ibaraki Prefecture, northern central Japan (36•‹30•ŒN, 14•‹38•ŒE), the authors found 14 unusual fish larvae. After close examination, these specimens turned out to be the larvae of the grunt sculpin (Rhamphocottus richardsoni Gunther), or kuchibashi-kajika in Japanese. Although R. richardsoni has been re ported from the western North Pacific as south as Sagami Bay (Abe, 1963; Hayasi and Nishiyama, 1980; Fujita and Kamei, 1984), this is the first record of its early larvae from Japan. Some comparisons are made with the eastern Pacific specimens described by Richardson and Washing ton (1980). Materials and methods Samples were caught with commercial shirasu seine fishing boats chartered by the Ibaraki Fig. 1. Map showing the location of the sampling Prefectural Fisheries Experimental Station and stations. the Ibaraki Prefectural Mariculture Center to conduct chum salmon (Oncorhynchus keta) smolts are surrounded with rocky shores on both the survey at the mouth of the Kuji River (Fig. 1). south and the north. Shirasu-seines were operated once at each station. All the samples studied were fixed in 10 Two stations, St. 1 and 2 are located at the mouth buffered formalin. Afterwards, the specimens of the Kuji River at a depth of 6m and 10.5m.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Molecular and Immunohistochemical Identification of a Sodium Hydrogen
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2011 Molecular and Immunohistochemical Identification of a Sodium Hydrogen Exchanger-2C (Nhe2C) Paralog in the Gills of Marine Longhorn Sculpin (Myoxocephalus Octodecemspinosus) Demi Brett Rabeneck Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Rabeneck, Demi Brett, "Molecular and Immunohistochemical Identification of a Sodium Hydrogen Exchanger-2C (Nhe2C) Paralog in the Gills of Marine Longhorn Sculpin (Myoxocephalus Octodecemspinosus)" (2011). Electronic Theses and Dissertations. 752. https://digitalcommons.georgiasouthern.edu/etd/752 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. MOLECULAR AND IMMUNOHISTOCHEMICAL IDENTIFICATION OF A SODIUM HYDROGEN EXCHANGER-2C (NHE2C) PARALOG IN THE GILLS OF MARINE LONGHORN SCULPIN (MYOXOCEPHALUS OCTODECEMSPINOSUS) by DEMI BRETT RABENECK (Under the Direction of James B. Claiborne) ABSTRACT Sodium hydrogen exchanger proteins (NHEs) are members of the cation proton antiporter superfamily (CPA) and are thought to function in fish for maintaining physiological ion concentrations and acid-base balances by excreting excess H+ ions from the body in exchange for Na+ ions. There are many more types of these proteins in teleost fish than in mammals due to putative genome duplication. This study describes a new form of NHE2 in the gills of marine longhorn sculpin, Myoxocephalus octodecemspinosus, designated NHE2c.
    [Show full text]
  • Cottoidei: Cottidae) Necessitates Generic Realignment
    G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me.
    [Show full text]
  • Columbia Sculpin (Cottus Hubbsi) Is a Small, Freshwater Sculpin (Cottidae)
    COSEWIC Assessment and Status Report on the Columbia Sculpin Cottus hubbsi in Canada SPECIAL CONCERN 2010 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2010. COSEWIC assessment and status report on the Columbia Sculpin Cottus hubbsi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 32 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC acknowledges Don McPhail for writing the provisional status report on the Columbia Sculpin, Cottus hubbsi, prepared under contract with Environment Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim status report and 2-month interim status reports were overseen by Dr. Eric Taylor, COSEWIC Freshwater Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le chabot du Columbia (Cottus hubbsi) au Canada. Cover illustration/photo: Columbia Sculpin — illustration by Diana McPhail. Her Majesty the Queen in Right of Canada, 2011. Catalogue No. CW69-14/268-2011E-PDF ISBN 978-1-100-18590-3 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2010 Common name Columbia Sculpin Scientific name Cottus hubbsi Status Special Concern Reason for designation In Canada, this small freshwater fish is endemic to the Columbia River basin where it has a small geographic distribution.
    [Show full text]
  • Cottus Schitsuumsh, a New Species of Sculpin (Scorpaeniformes: Cottidae) in the Columbia River Basin, Idaho-Montana, USA
    Zootaxa 3755 (3): 241–258 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3755.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:5147B3DB-9071-408B-A8D1-B3575ED5806E Cottus schitsuumsh, a new species of sculpin (Scorpaeniformes: Cottidae) in the Columbia River basin, Idaho-Montana, USA MICHAEL LEMOINE1,3, MICHAEL K. YOUNG2, KEVIN S. MCKELVEY2, LISA EBY1, KRISTINE L. PILGRIM2 & MICHAEL K. SCHWARTZ2 1 Wildlife Biology Program, University of Montana, Missoula, Montana 59812, USA 2U.S. Forest Service, Rocky Mountain Research Station, Missoula, Montana 59801, USA 3Corresponding author. E-mail: [email protected] Abstract Fishes of the genus Cottus have long been taxonomically challenging because of morphological similarities among species and their tendency to hybridize, and a number of undescribed species may remain in this genus. We used a combination of genetic and morphological methods to delineate and describe Cottus schitsuumsh, Cedar Sculpin, a new species, from the upper Columbia River basin, Idaho-Montana, USA. Although historically confused with the Shorthead Sculpin (C. confusus), the genetic distance between C. schitsuumsh and C. confusus (4.84–6.29%) suggests these species are distant relatives. Moreover, the two species can be differentiated on the basis of lateral-line pores on the caudal peduncle, head width, and interpelvic width. Cottus schitsuumsh is also distinct from all other Cottus in this region in having a single small, skin-covered, preopercular spine. Haplotypes of mtDNA cytochrome oxidase c subunit 1 of C. schitsuumsh differed from all other members of the genus at three positions, had interspecific genetic distances typical for congeneric fishes (1.61–2.74% to nearest neighbors), and were monophyletic in maximum-likelihood trees.
    [Show full text]
  • Bear Lake Sculpin Cottus Extensus
    Bear Lake Sculpin Cottus extensus Actinopterygii — Scorpaeniformes — Cottidae CONSERVATION STATUS / CLASSIFICATION Rangewide: Critically imperiled (G1) Statewide: Critically imperiled (S1) ESA: No status USFS: Region 1: No status; Region 4: No status BLM: Rangewide/Globally imperiled (Type 2) IDFG: Protected nongame BASIS FOR INCLUSION Endemic to Bear Lake. TAXONOMY No subspecies has been proposed. DISTRIBUTION AND ABUNDANCE This species is endemic to Bear Lake. The population is estimated to be in the millions. POPULATION TREND Monitoring for >10 years suggests the population is stable. HABITAT AND ECOLOGY The Bear Lake sculpin occurs throughout the lake in benthic areas. Individuals spawn near shore in mid–April to mid–May and attach eggs to the undersides of rocks where males guard egg masses (Sigler and Sigler 1987). Adults return to deeper water after spawning. After hatching, fry utilize currents to disperse from the rocky spawning areas. Sculpins are opportunistic bottom feeders on benthic invertebrates and ostracods. ISSUES A decline in lake levels due to drought and water management could limit spawning and rearing habitat. Increasing human development around the lake could lead to lowering of water quality due to waste water discharges. Legal and illegal introductions of piscivorous fish could affect populations through an increased predation rate. RECOMMENDED ACTIONS Continue programs that (1) monitor the population status and trend; (2) evaluate the relationship between water quality and level and fish populations; (3) stock sterile triploid lake trout; and (4) removal of illegally introduced non–native fish (e.g., walleye) in conjunction with adjacent states. Bear Lake Sculpin Cottus extensus Ecological Section Species Range 10 August 2005 Fish information is from Idaho Fish and Wildlife 0 20 40 80 Kilometers Information System, Idaho Deptartment of Fish and Game and displayed at the 6th code hydrologic unit.
    [Show full text]