Fourhorn Sculpin Myoxocephalus Quadricornis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cottus Poecilopus Heckel, 1836, in the River Javorin- Ka, the Tatra
Oecologia Montana 2018, Cottus poecilopus Heckel, 1836, in the river Javorin- 27, 21-26 ka, the Tatra mountains, Slovakia M. JANIGA, Jr. In Tatranská Javorina under Muráň mountain, a small fish nursery was built by Christian Kraft von Institute of High Mountain Biology University of Hohenlohe around 1930. The most comprehensive Žilina, Tatranská Javorina 7, SK-059 56, Slovakia; studies on fish from the Tatra mountains were writ- e-mail:: [email protected] ten by professor Václav Dyk (1957; 1961), Dyk and Dyková (1964a,b; 1965), who studied altitudinal distribution of fish, describing the highest points where fish were found. His studies on fish were likely the most complex studies of their kind during that period. Along with his wife Sylvia, who illus- Abstract. This study focuses on the Cottus poe- trated his studies, they published the first realistic cilopus from the river Javorinka in the north-east studies on fish from the Tatra mountains including High Tatra mountains, Slovakia. The movement the river Javorinka (Dyk and Dyková 1964a). Feri- and residence of 75 Alpine bullhead in the river anc (1948) published the first Slovakian nomenclature were monitored and carefully recorded using GPS of fish in 1948. Eugen K. Balon (1964; 1966) was the coordinates. A map representing their location in next famous ichthyologist who became a recognised the river was generated. This data was collected in expert in the fish fauna of the streams of the Tatra the spring and summer of 2016 and in the autumn mountains, the river Poprad, and various high moun- of 2017. Body length and body weight of 67 Alpine tain lakes. -
Trophic Relationships in Dutch Reservoirs Recently Invaded by Ponto-Caspian Species: Insights from Fish Trends and Stable Isotope Analysis
Aquatic Invasions (2019) Volume 14, Issue 2: 280–298 CORRECTED PROOF Research Article Trophic relationships in Dutch reservoirs recently invaded by Ponto-Caspian species: insights from fish trends and stable isotope analysis Yvon J.M. Verstijnen1,*, Esther C.H.E.T. Lucassen1,2, Marinus van der Gaag3, Arco J. Wagenvoort5, Henk Castelijns4, Henk A.M. Ketelaars4, Gerard van der Velde3,6,7 and Alfons J.P. Smolders1,2 1B-WARE Research Centre, Radboud University, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 2Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands 3Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands 4Evides Water Company, PO Box 4472, 3006 AL Rotterdam, The Netherlands 5AqWa, Voorstad 45, 4461 RT Goes, The Netherlands 6Naturalis Biodiversity Center, P.O. 9517, 2300 RA Leiden, The Netherlands 7Netherlands Centre of Expertise on Exotic Species (NEC-E). Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Author e-mails: [email protected] (YJMV), [email protected] (ECHETL), [email protected] (MG), [email protected], (AJW), [email protected] (HC), [email protected] (HAMK), [email protected] (VG), [email protected] (AJPS) *Corresponding author Citation: Verstijnen YJM, Lucassen ECHET, van der Gaag M, Wagenvoort AJ, Abstract Castelijns H, Ketelaars HAM, van der Velde G, Smolders AJP (2019) Trophic Invasive species can directly or indirectly alter (a)biotic characteristics of ecosystems, relationships in Dutch reservoirs recently resulting in changing energy flows through the food web. -
Aquatic Behaviour of Polar Bears (Ursus Maritimus) in an Increasingly Ice-Free Arctic Received: 8 December 2017 Karen Lone 1, Kit M
www.nature.com/scientificreports OPEN Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic Received: 8 December 2017 Karen Lone 1, Kit M. Kovacs1, Christian Lydersen1, Mike Fedak 2, Magnus Andersen1, Accepted: 13 June 2018 Philip Lovell2 & Jon Aars1 Published: xx xx xxxx Polar bears are ice-associated marine mammals that are known to swim and dive, yet their aquatic behaviour is poorly documented. Reductions in Arctic sea ice are clearly a major threat to this species, but understanding polar bears’ potential behavioural plasticity with respect to the ongoing changes requires knowledge of their swimming and diving skills. This study quantifed time spent in water by adult female polar bears (n = 57) via deployment of various instruments bearing saltwater switches, and in some case pressure sensors (79 deployments, 64.8 bear-years of data). There were marked seasonal patterns in aquatic behaviour, with more time spent in the water during summer, when 75% of the polar bears swam daily (May-July). Females with cubs-of-the-year spent less time in the water than other females from den emergence (April) until mid-summer, consistent with small cubs being vulnerable to hypothermia and drowning. Some bears undertook notable long-distance-swims. Dive depths up to 13.9 m were recorded, with dives ≥5 m being common. The considerable swimming and diving capacities of polar bears might provide them with tools to exploit aquatic environments previously not utilized. This is likely to be increasingly important to the species’ survival in an Arctic with little or no persistent sea ice. -
KLMN Featured Creature Sculpins
National Park Service Featured Creature U.S. Department of the Interior February 2021 Klamath Network Inventory & Monitoring Division Natural Resources Stewardship & Science Sculpins Cottidae General Description Habitat and Distribution Darting low through tide pools or lurking Sculpins occur in both marine and freshwater in stream bottoms, members of the large habitats of North America, Europe, and Asia, fish family, Cottidae, are commonly called with just a few marine species in the southern USFWS/ROGER TABOR sculpins. They also go by “bullhead” or “sea hemisphere. Most abundant in the North Prickly sculpin (Cottus asper) scorpion,” and even some very unflattering Pacific, they tend to frequent shallow water terms, like “double uglies.” You’re not likely and tide pools. In North American coldwa- to catch one on your fishing line, but if you ter streams, they overlap the same habitat as them to keep them oxygenated until they look carefully into ocean tide pools, you trout and salmon, including small headwater hatch a few weeks later into baby fish, known may spot these well camouflaged creatures streams, lakes, and rocky areas of lowland as fry. The fry will be sexually mature in time moving around the bottom. Most of the more rivers. Freshwater sculpin are sometimes the for the next breeding season. than 250–300 known species in this family are only abundant fish species in streams. Inland marine, though some live in freshwater. species found in Pacific Northwest streams Fun Facts include the riffle sculpin (Cottus gulosus), • Some sculpins are able to compress their Generally, sculpins are bottom-dwelling prickly sculpin (Cottus asper), and coastrange skull bones to fit inside small spaces. -
Cytochemical Features of Olfactory Receptor Cells in Benthic and Pelagic Sculpins (Cottoidei) from Lake Baikal
Arch Biol Sci. 2016;68(2):345-353 DOI:10.2298/ABS150701026K CYTOCHEMICAL FEATURES OF OLFACTORY RECEPTOR CELLS IN BENTHIC AND PELAGIC SCULPINS (COTTOIDEI) FROM LAKE BAIKAL Igor V. Klimenkov1,2,*, Nikolay P. Sudakov2,3,4, Mikhail V. Pastukhov5 and Nikolay S. Kositsyn6 1 Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033 Russia 2 Irkutsk State University, 1 Karl Marx St., Irkutsk, 664003 Russia 3 Scientific Center for Reconstructive and Restorative Surgery, Siberian Branch, Russian Academy of Medical Sciences, 1 Bortsov Revolyutsii St., Irkutsk, 664003 Russia 4 Irkutsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Lermontov St. 134, Irkutsk, 664033, Russia 5 Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a Favorsky St., Irkutsk, 664033 Russia 6 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova St., Moscow 117485 *Corresponding author: [email protected] Received: July 1, 2015; Revised: August 17, 2015; Accepted: October 6, 2015; Published online: March 21, 2016 Abstract: Electron and laser confocal microscopy were used to analyze the adaptive cytochemical features of the olfactory epithelium in three genetically close deep-water Cottoidei species endemic to Lake Baikal − golomyanka (Baikal oilfish) Comephorus baicalensis, longfin Baikal sculpin Cottocomephorus inermis and fat sculpin Batrachocottus nikolskii − whose foraging strategies are realized under different hydrostatic pressure regimes. Hypobaric hypoxia that developed in B. nikol- skii (a deep-water benthic species) upon delivery to the surface caused distinct destructive changes in cells of the olfactory epithelium. In C. baicalensis and C. inermis, whose foraging behavior involves daily vertical migrations between deep and shallow layers, these cells are characterized by a significantly higher structural and functional stability than in deep-water B. -
Eye Histology of the Tytoona Cave Sculpin: Eye Loss Evolves Slower Than Enhancement of Mandibular Pores in Cavefish?
McCaffery et al. Eye histology of the Tytoona Cave Sculpin: Eye loss evolves slower than enhancement of mandibular pores in cavefish? Sean McCaffery1, Emily Collins2 and Luis Espinasa3 School of Science, Marist College, 3399 North Rd, Poughkeepsie, New York 12601, USA 1 [email protected] 2 [email protected] [email protected] (corresponding author) Key Words: Cottus bairdi, Cottus cognatus, Cottidae, Scorpaeniformes, Actinopterygii, Tytoona Cave Nature Preserve, Sinking Valley, Blair County, Pennsylvania, troglobite, eye histology, mandibular pore. Despite the presence of caves in northern latitudes above 40–50ºN that would typically be considered suitable environments for cave-adapted fish, stygobiotic fish are absent from these locations (Romero and Paulsen 2001; Proudlove 2001). One factor that likely hindered the distribution of cavefish in these areas was the migration of polar ice sheets during the Wisconsinan Period, which occurred approximately 20,000 years ago. The glaciers covered the majority of the Northern Hemisphere until about 12,000 years ago, making many caves in the region uninhabitable for fish until the period ended (Flint 1971). Presently, the northernmost cave-adapted fish in the world is the Nippenose Cave Sculpin of the Cottus bairdi-cognatus complex (Espinasa and Jeffery 2003) (Actinopterygii: Scorpaeniformes: Cottidae), found at 41º 9’ N, in caves of the Nippenose Valley, in Lycoming County, Central Pennsylvania. In some taxonomic databases and the genetic data repository GenBank, this taxon referred to as Cottus sp. 'Nippenose Valley' (Pennsylvania Grotto Sculpin). Here, we discuss a second population different from Nippenose Cave Sculpin. We refer to this population from Tytoona Cave, Pennsylvania, as the Tytoona Cave Scuplin. -
Paleolithic Fish from Southern Poland: a Paleozoogeographical Approach
10. ARCH. VOL. 22 (2ª)_ARCHAEOFAUNA 04/09/13 18:05 Página 123 Archaeofauna 22 (2013): 123-131 Paleolithic Fish from Southern Poland: A Paleozoogeographical Approach LEMBI LÕUGAS1, PIOTR WOJTAL2, JAROSŁAW WILCZYń SKI2 & KRZYSZTOF STEFANIAK3 1Department of Archaeobiology and Ancient Technology, Institute of History, University of Tallinn, Rüütli 6, EE10130 Tallinn, Estonia [email protected] 2Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31-016 Cracow, Poland [email protected], [email protected] 3Institute of Zoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland [email protected] (Received 5 August 2012; Revised 31 October 2012; Accepted 17 July 2013) ABSTRACT: The area covered by glaciers during the Last Glacial Maximum (LGM) includes a large territory in northern Europe. In this region, Paleolithic finds are rare and fish bones fair- ly unique. Analysis of Paleolithic fish bones outside of the LGM range was carried out with the intention of reconstructing the paleozoogeographical distribution of this animal group before the retreat of the ice cap from the Baltic Basin. This research focuses on an archaeological fish bone assemblage from Obłazowa Cave, southern Poland. Other samples examined are from Krucza Skała Rock Shelter (Kroczyckie Rocks), Biśnik Cave (Wodąca Valley), Borsuka Cave (Szklarka Valley), and Nad Tunelem Cave (Prądnik Valley). The latter sites are considered natu- rally accumulated deposits, but, at Obłazowa and Krucza Skała, anthropogenic factors also played an important role. The fish bones from the Paleolithic cave deposits of Obłazowa inclu- ded at least six fish genera: Thymallus, Coregonus, Salmo, Salvelinus, Esox, and Cottus. -
Table of Contents
Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included -
A Fish Habitat Partnership
A Fish Habitat Partnership Strategic Plan for Fish Habitat Conservation in Midwest Glacial Lakes Engbretson Underwater Photography September 30, 2009 This page intentionally left blank. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY 4 I. BACKGROUND 7 II. VALUES OF GLACIAL LAKES 8 III. OVERVIEW OF IMPACTS TO GLACIAL LAKES 9 IV. AN ECOREGIONAL APPROACH 14 V. MULTIPLE INTERESTS WITH COMMON GOALS 23 VI. INVASIVES SPECIES, CLIMATE CHANGE 23 VII. CHALLENGES 25 VIII. INTERIM OBJECTIVES AND TARGETS 26 IX. INTERIM PRIORITY WATERSHEDS 29 LITERATURE CITED 30 APPENDICES I Steering Committee, Contributing Partners and Working Groups 33 II Fish Habitat Conservation Strategies Grouped By Themes 34 III Species of Greatest Conservation Need By Level III Ecoregions 36 Contact Information: Pat Rivers, Midwest Glacial Lakes Project Manager 1601 Minnesota Drive Brainerd, MN 56401 Telephone 218-327-4306 [email protected] www.midwestglaciallakes.org 3 Executive Summary OUR MISSION The mission of the Midwest Glacial Lakes Partnership is to work together to protect, rehabilitate, and enhance sustainable fish habitats in glacial lakes of the Midwest for the use and enjoyment of current and future generations. Glacial lakes (lakes formed by glacial activity) are a common feature on the midwestern landscape. From small, productive potholes to the large windswept walleye “factories”, glacial lakes are an integral part of the communities within which they are found and taken collectively are a resource of national importance. Despite this value, lakes are commonly treated more as a commodity rather than a natural resource susceptible to degradation. Often viewed apart from the landscape within which they occupy, human activities on land—and in water—have compromised many of these systems. -
Development of a Pan‐Arctic Monitoring Plan for Polar Bears Background Paper
CAFF Monitoring Series Report No. 1 January 2011 DEVELOPMENT OF A PAN‐ARCTIC MONITORING PLAN FOR POLAR BEARS BACKGROUND PAPER Dag Vongraven and Elizabeth Peacock ARCTIC COUNCIL DEVELOPMENT OF A PAN‐ARCTIC MONITORING PLAN FOR POLAR BEARS Acknowledgements BACKGROUND PAPER The Conservation of Arctic Flora and Fauna (CAFF) is a Working Group of the Arctic Council. Author Dag Vongraven Table of Contents CAFF Designated Agencies: Norwegian Polar Institute Foreword • Directorate for Nature Management, Trondheim, Norway Elizabeth Peacock • Environment Canada, Ottawa, Canada US Geological Survey, 1. Introduction Alaska Science Center • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) 1 1.1 Project objectives 2 • Finnish Ministry of the Environment, Helsinki, Finland Editing and layout 1.2 Definition of monitoring 2 • Icelandic Institute of Natural History, Reykjavik, Iceland Tom Barry 1.3 Adaptive management/implementation 2 • The Ministry of Domestic Affairs, Nature and Environment, Greenland 2. Review of biology and natural history • Russian Federation Ministry of Natural Resources, Moscow, Russia 2.1 Reproductive and vital rates 3 2.2 Movement/migrations 4 • Swedish Environmental Protection Agency, Stockholm, Sweden 2.3 Diet 4 • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska 2.4 Diseases, parasites and pathogens 4 CAFF Permanent Participant Organizations: 3. Polar bear subpopulations • Aleut International Association (AIA) 3.1 Distribution 5 • Arctic Athabaskan Council (AAC) 3.2 Subpopulations/management units 5 • Gwich’in Council International (GCI) 3.3 Presently delineated populations 5 3.3.1 Arctic Basin (AB) 5 • Inuit Circumpolar Conference (ICC) – Greenland, Alaska and Canada 3.3.2 Baffin Bay (BB) 6 • Russian Indigenous Peoples of the North (RAIPON) 3.3.3 Barents Sea (BS) 7 3.3.4 Chukchi Sea (CS) 7 • Saami Council 3.3.5 Davis Strait (DS) 8 This publication should be cited as: 3.3.6 East Greenland (EG) 8 Vongraven, D and Peacock, E. -
Evolution of Cyclooxygenase in the Chordates
EVOLUTION OF CYCLOOXYGENASE IN THE CHORDATES By JUSTIN CHASE HAVIRD A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008 1 © 2008 Justin Chase Havird 2 To the teachers who inspired, directed, and challenged me. My high school marine biology teacher, Larry Joye, first introduced me to the fascinating world of life in the water and since then my endeavors have never strayed far from it. Dr. David Evans enthusiastically welcomed me into his lab as an undergraduate, although I had no former research experience. What started as a part-time project soon evolved into an academic career as I was given the opportunity to conduct original research. During this time, Dr. Keith Choe was an invaluable asset and inspiration. Growing from this original partnership, I continued working with David on my master’s research and he has always supported my academic and research endeavors; I cannot envision a better advisor. 3 ACKNOWLEDGMENTS I most of all thank my supervisory committee chair, Dr. David H. Evans. Although David was nearing retirement and had resolved to not accept any new students, he welcomed me as a graduate student without any hesitation. He has guided me in developing research strategies, implementing those strategies, and interpreting the results. He has always supported my projects and none of them would have been accomplished without his enthusiasm. I also thank my supervisory committee members for their commitment to my research and their willingness to share their expertise. -
2010 Animal Species of Concern
MONTANA NATURAL HERITAGE PROGRAM Animal Species of Concern Species List Last Updated 08/05/2010 219 Species of Concern 86 Potential Species of Concern All Records (no filtering) A program of the University of Montana and Natural Resource Information Systems, Montana State Library Introduction The Montana Natural Heritage Program (MTNHP) serves as the state's information source for animals, plants, and plant communities with a focus on species and communities that are rare, threatened, and/or have declining trends and as a result are at risk or potentially at risk of extirpation in Montana. This report on Montana Animal Species of Concern is produced jointly by the Montana Natural Heritage Program (MTNHP) and Montana Department of Fish, Wildlife, and Parks (MFWP). Montana Animal Species of Concern are native Montana animals that are considered to be "at risk" due to declining population trends, threats to their habitats, and/or restricted distribution. Also included in this report are Potential Animal Species of Concern -- animals for which current, often limited, information suggests potential vulnerability or for which additional data are needed before an accurate status assessment can be made. Over the last 200 years, 5 species with historic breeding ranges in Montana have been extirpated from the state; Woodland Caribou (Rangifer tarandus), Greater Prairie-Chicken (Tympanuchus cupido), Passenger Pigeon (Ectopistes migratorius), Pilose Crayfish (Pacifastacus gambelii), and Rocky Mountain Locust (Melanoplus spretus). Designation as a Montana Animal Species of Concern or Potential Animal Species of Concern is not a statutory or regulatory classification. Instead, these designations provide a basis for resource managers and decision-makers to make proactive decisions regarding species conservation and data collection priorities in order to avoid additional extirpations.