A New Interpretation of Dragonfly Wing Venation Based Upon Early Upper

Total Page:16

File Type:pdf, Size:1020Kb

A New Interpretation of Dragonfly Wing Venation Based Upon Early Upper A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings EDGARF. RIEK 19 DufJL Street, Ainslie, Conberrcl, A .C.T.,2602, Austrcllia AND JARMILAKUKALOVA-PECK' Department of Geology, Carleton Universih, Ottc~wcl,Ont.. Cnnndo K IS 5B6 Received May 4. 1983 RIEK,E. F., and J. KUKALOVA-PECK.1984. A new interpretation of dragontly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Can. J. Zool. 62: 1150- 1166. The oldest known odonatoid wings are described from the Namurian of Argentina: Eugeropteron lunatum Riek n.g. et sp. and Geropteron arcuatum Riek n.g. and sp. (Meganisoptera: Meganeurina: Eugeropteridae n, fam.). The wings are gener- alized and support a reinterpretation of the venation of living Odonata as being fully homologous to that of other pterygotes and closely related to Ephemeropteroidea, but different from Neoptera. Therefore, Paleoptera is a valid phylogenetic unit, and Odonatoidea and Ephemeropteroidea are sister groups. RIEK.E. F.. et J. KUKALOVA-PECK.1984. A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Can. J. Zool. 62: 1 150- 1 166. On trouvera ici la description des plus vieilles ailes odonatoi'des jamais rencontrees: il s'agit d'ailes d'Eugeropteron lunatum n. gen. et n. sp. et de Geropteron arcuatum n. gen. et n. sp. Riek (Meganisoptera: Meganeurina: Eugeropteridae n. fam.) provenant du Namurien d'Argentine. Les ailes suivent le plan de base et donnent lieu a une reinterpretation de la nervation des Odonates rkcentes selon laquelle les ailes des Odonates recentes seraient entierement homologues des ailes d'autres ptkrygotes, trks rapprochees des ailes d'Ephemeropteroidea, mais differentes des ailes de Neoptera. L'appellation Paleoptera coiffe donc un ensemble phylogenktique valide et il est juste de considerer comme des groupes-soeurs les Odonatoidea et les Ephemeropteroidea. [Traduit par le journal] Introduction Pterygote wing articulation was recently studied by Most entomologists follow Martynov (1924) and agree Kukalova-Peck ( 1983), who compared modern and Paleozoic that the pterygotes are naturally divided into Paleoptera and dragonflies with modern and Paleozoic Ephemeroptera, Paleo- Neoptera (Hennig 198 1 ). Nevertheless, some consider Paleo- zoic Paleodictyopteroidea (Paleodictyoptera, Megasecoptera, ptera not to be a natural phylogenetic group, but rather a grade Diaphanopterodea, and Permothemistida (=~rchodonata~)), (Lemche 1940; Boudreaux 1979; Rohdendorf and Rasnitsyn and primitive modern Neoptera. Multiple comparisons of artic- 1980; Rasnitsyn 1980; Kristensen 198 1 ; Matsuda 1970, 198 1 ). ular systems in different evolutionary stages showed that the Sometimes Odonata are assumed to be closer to Neoptera than odonatoid articulation evolved in a way similar to that of other to the Ephemeroptera (Kristensen 198 I), while other times, the Paleoptera, but unlike that of Neoptera. wings and wing articulation of Odonata are judged to be so The position of odonatoids within the Paleoptera, namely different that insect wings are believed to have originated whether they are more closely related to the paleodicty- twice: in the pterygote ancestor and in the odonatan ancestor opteroids or to the ephemeropteroids, is not clearly shown in (La Greca 1980; Matsuda 198 1 ). the articulation (Kukalova-Peck 1983). However, the closer These last two unorthodox evolutionary ideas find support in relationship to ephemeroids is evident in the veinal characters, the erroneous belief that the odonate wing venation and wing if the odonatoid veinal system presently used is corrected ac- articulation are unique and cannot be fully homologized with cording to the clues found in the fossil record. the other pterygote orders. The goal of this paper is to provide documentation that the We contend that wings and wing articulation originated at odonatoid venational system does not lack any veins as is the same time and brought winged insects into existence as a presently believed, and that it shares the ground plan with the group; therefore, they are considered as the basic apomorphic ephemeroids . characters of the pterygotes. It is believed that the split into Paleoptera, Neoptera, and the major ordinal evolutionary lin- Odonatan wing venation eages was initiated mainly by the radiation of the pterygote The interpretation of odonatan wing venation has a long proto-wings into diverse flight-adaptive structures (Martynov history of disagreement. Comstock and Needham ( 1898, 1899) 1924; Kukalova-Peck 1978, 1983; Hennig 198 1 ). If these con- erroneously assumed that veins are formed around tracheae and clusions are correct and wings are monophyletic, then odonatan wing venation and articulation must be fully homologous to 'we follow Sinichenkova (1980) in calling the order Permo- that of the other pterygotes. themistida Martynov, 1938, rather than Archodonata Martynov. 1932, because the group belongs in the paleodictyopteroids and has 'Author to whom reprint requests should be addressed. no relationship to Odonata. RIEK AND KUKALOVA-PECK 1151 that the nymphal tracheation recapitulates the ancestral vena- of with R, and the radial vein as the plesiomorphic double tion of adults. In fact, the preveinal blood channels in juveniles radius of primitive Paleodictyoptera (Figs. 6, 7) and fossil are invisible but present, and tracheae penetrate into them and living Ephemeroptera, i.e., composed of two radial stems secondarily and sometimes quite erratically. An erroneous RA and RP, the odonatan venation will lose its "strange" char- tracheae-based veinal system was adopted for odonates by acter and will become related to Ephemeroptera and Paleo- Needham ( 1903). Owing to vagaries of tracheation, the wings dictyoptera. Both "missing" veins MP- and CuA+ will then were interpreted as being completely unrelated to those of other be present in the venation, and the scheme will be at last fully pterygotes, i.e., RP (Rs)' was a convex vein crossed by M, and homologous with that in the other pterygote orders. M2, etc. Later on, numerous attempts were made by a number The original, generalized odonatan veinal scheme is indi- of authors to provide a homologous veinal scheme, namely cated in many Paleozoic Meganisoptera, but especially in- by Lameere (1922), Tillyard (1914, 1915, 1916, 1917, 19220, formative are two highly generalized (and probably also 19226, 1925a, 19256, 1926, 1928, 1935), Tillyard and the oldest known) dragonfly wings, which were recently Fraser ( 1938 - 1940), Martynov ( 1924), Carpenter ( 1 93 1 , found in the Early Upper Carboniferous deposits of Argentina. 1938, 1939, 1943n, 19436, 1944, 1947, 1960), Forbes (1943), Their venation represents the "missing link" between the Zalessky ( 1944), Fraser ( 1938, 1948, 1957), Needham ( 1903, typical odonatoid pattern and that of the ephemero-odonatoid 1951), Hamilton (1971, 1972), and Carle (1982). The inter- common ancestor. The Argentinian fossil dragonflies are pretations differ considerably, but none of them has been found described in the following text and their venation is compared to be correct in comparison with the venation of the oldest and with fossil and modern odonates, ephemeropteroids, and most generalized fossil dragonflies, which are described in this paleodictyopteroids. paper. One reason why there are so many seemingly feasible interpretations of odonate venation lies in the fact that in mod- Occurrence of the fossils ern dragonflies the primary veins alternate with the secondary Two very well preserved and almost complete insect wings intercalar veins and an occasional veinal supplement, and can- were found near Malanzan, Cuesta de la Herradura, La Rioja, not be readily distinguished from each other. However, sec- Argentina, in the carbonaceous group of the La Divisoria ondary veins are not fully tracheated and are sometimes miss- Member of the Malanzan Formation, by Drs. S. Archangelsky ing in the more primitive fossil dragonflies. Another reason is and R. Leguizamon. The insects were in association with a the basal parallel alignment of the fused veinal stems, which in plant assemblage including Vqjnowsba argentina Archangel- modern dragonflies is accompanied by disappearance of the sky & Leguizamon , Ginkgophvllum diuzii Archangelsky & original veinal crossings between these stems. If the crossings Arrondo, and Botrychiopsis u)eissiana Kurtz, as well as a were present, they would indicate the pattern under which the number of as yet undescribed plant species (S. Archangelsky, original fusions took place. The contribution of the fossil personal communication). dragonflies introduced here is that they (i) preserve ancestral Previous records of this fossiliferous horizon mentioned a character states of venation devoid of most secondary veins, Devonian or Early Carboniferous age, whereas Archangelsky and (ii) show the original pattern of veinal fusions before the and Leguizamon ( 197 I) thought that the strata might be dated crossings disappeared. Thus, generalized fossil dragonflies near the Westphalian -Stephanian boundary. Azcuy ( 1975) give clues to how the venation evolved. referred the horizon to the Namurian (Early Upper Carbon- Presently, the most widely followed odonatan veinal scheme iferous) after a palynological
Recommended publications
  • The Engineering of the Giant Dragonflies of the Permian: Revised Body Mass, Power, Air Supply, Thermoregulation and the Role of Air Density Alan E
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb185405. doi:10.1242/jeb.185405 COMMENTARY The engineering of the giant dragonflies of the Permian: revised body mass, power, air supply, thermoregulation and the role of air density Alan E. R. Cannell ABSTRACT abdomen as well as spiny and surprisingly robust legs. Illustrations An engineering examination of allometric and analogical data on the of M. monyi and a female Meganeurula selysii (Shear and flight of giant Permian insects (Protodonata, Meganeura or griffinflies) Kukalova-Peck, 1990) also indicate creatures with strong mouth indicates that previous estimates of the body mass of these insects parts, well-developed pincers and strong long thick legs. In both are too low and that the largest of these insects (wingspan of 70 cm or drawings, the abdomen is similar in diameter to the thorax, unlike more) would have had a mass of 100–150 g, several times greater the structure of most modern dragonflies, which have much more – – than previously thought. Here, the power needed to generate lift and slender abdomens. This large size and consequently high mass fly at the speeds typical of modern large dragonflies is examined has attracted attention for over a hundred years as there are no extant together with the metabolic rate and subsequent heat generated by insects of this size and their physiology in terms of power generation the thoracic muscles. This evaluation agrees with previous work and thermoregulation is not understood. This Commentary suggesting that the larger specimens would rapidly overheat in the examines the questions of mass, power generation to fly and high ambient temperatures assumed in the Permian.
    [Show full text]
  • André Nel Sixtieth Anniversary Festschrift
    Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years.
    [Show full text]
  • 9 Paleontological Conference Th
    Polish Academy of Sciences Institute of Paleobiology 9th Paleontological Conference Warszawa, 10–11 October 2008 Abstracts Warszawa Praha Bratislava Edited by Andrzej Pisera, Maria Aleksandra Bitner and Adam T. Halamski Honorary Committee Prof. Oldrich Fatka, Charles University of Prague, Prague Prof. Josef Michalík, Slovak Academy of Sciences, Bratislava Assoc. Prof. Jerzy Nawrocki, Polish Geological Institute, Warszawa Prof. Tadeusz Peryt, Polish Geological Institute, Warszawa Prof. Grzegorz Racki, Institute of Paleobiology, Warszawa Prof. Jerzy Trammer, University of Warsaw, Warszawa Prof. Alfred Uchman, Jagiellonian University, Kraków Martyna Wojciechowska, National Geographic Polska, Warszawa Organizing Committee Dr Maria Aleksandra Bitner (Secretary), Błażej Błażejewski, MSc, Prof. Andrzej Gaździcki, Dr Adam T. Halamski, Assoc. Prof. Anna Kozłowska, Assoc. Prof. Andrzej Pisera Sponsors Institute of Paleobiology, Warszawa Polish Geological Institute, Warszawa National Geographic Polska, Warszawa Precoptic Co., Warszawa Cover picture: Quenstedtoceras henrici Douvillé, 1912 Cover designed by Aleksandra Hołda−Michalska Copyright © Instytut Paleobiologii PAN Nakład 150 egz. Typesetting and Layout: Aleksandra Szmielew Warszawska Drukarnia Naukowa PAN ABSTRACTS Paleotemperature and paleodiet reconstruction on the base of oxygen and carbon isotopes from mammoth tusk dentine and horse teeth enamel during Late Paleolith and Mesolith MARTINA ÁBELOVÁ State Geological Institute of Dionýz Štúr, Mlynská dolina 1, SK−817 04 Bratislava 11, Slovak Republic; [email protected] The use of stable isotopes has proven to be one of the most effective methods in re− constructing paleoenvironments and paleodiet through the upper Pleistocene period (e.g. Fricke et al. 1998; Genoni et al. 1998; Bocherens 2003). This study demonstrates how isotopic data can be employed alongside other forms of evidence to inform on past at great time depths, making it especially relevant to the Palaeolithic where there is a wealth of material potentially available for study.
    [Show full text]
  • THE ORIGIN and EVOLUTION of HYMENOPTEROUS INSECTS [P
    THE ORIGIN AND EVOLUTION OF HYMENOPTEROUS INSECTS [p. 24] Chapter 3 EVOLUTION OF THE INFRACLASS SCARABAEONES A. P. Rasnitzyn* Dragonflies [order Odonata] and mayflies [order Ephemeroptera], which have retained a primitive thorax structure (absence of a cryptosternum) but are specialized in other respects, occupy the most isolated position in the infraclass. They are similar to each other in a number of characters, but the nature of the latter does not allow drawing a conclusion about any close relationship of the two orders. Indeed, the primitiveness of the structure of the thorax common to both of them, like any symplesiomorphy, is not evidence of a common origin. The adaptations of the larvae of mayflies and dragonflies to an aquatic way of life are different, and they show, rather, an independent transition to development in water. The loss of the ability to fold the wings as well is connected with different processes in them: in mayflies, with the ephemerality of the imago, the function of which is essentially limited to nuptial flight and oviposition; and in dragonflies, with the metamorphosis of the adult insect to an active aerial predator. It is highly probable that mayflies and dragonflies are independent evolutionary branches. The belonging of dragonflies and mayflies to a common trunk of Scarabaeones, that is, the isolation of them from Protoptera as part of a single trunk with the remaining members of the infraclass (except Protoptera), is confirmed by the metamorphosis of the style of the ninth segment in mayfly males into part of the copulatory organ [endophallus], and in dragonfly females into a sheath of the ovipositor.
    [Show full text]
  • Rasnitsynala Sigambrorum Gen. Et Sp. N., a Small Odonatopterid
    A peer-reviewed open-access journal ZooKeys 130: 57–66 (2011)Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid... 57 doi: 10.3897/zookeys.130.1458 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid (“Eomeganisoptera”, “Erasipteridae”) from the early Late Carboniferous of Hagen-Vorhalle (Germany) Wolfgang Zessin1,†, Carsten Brauckmann2,‡, Elke Gröning2,§ 1 Lange Straße 9, 19230 Jasnitz, Germany 2 Clausthal University of Technology, Institute of Geology and Paleontology, Leibnizstraße 10, 38678 Clausthal-Zellerfeld, Germany † urn:lsid:zoobank.org:author:EE854837-A2FB-457C-82F1-60406627EC58 ‡ urn:lsid:zoobank.org:author:A9B536B4-6DEF-48C4-980A-9EB8A9467F8B § urn:lsid:zoobank.org:author:6D085012-9A15-4937-B408-FEFDF39B4907 Corresponding author: Wolfgang Zessin ([email protected]) Academic editor: D. Shcherbakov | Received 2 May 2011 | Accepted 26 August 2011 | Published 24 September 2011 urn:lsid:zoobank.org:pub:708DBB4C-244E-4606-992B-D10129016158 Citation: Zessin W, Brauckmann C, Gröning E (2011) Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid (“Eomeganisoptera”, “Erasipteridae”) from the early Late Carboniferous of Hagen-Vorhalle (Germany). In: Shcherbakov DE, Engel MS, Sharkey MJ (Eds) Advances in the Systematics of Fossil and Modern Insects: Honouring Alexandr Rasnitsyn. ZooKeys 130: 57–66. doi: 10.3897/zookeys.130.1458 Abstract Besides Erasipteroides valentini (Brauckmann in Brauckmann, Koch & Kemper, 1985), Zessinella siope Brauckmann, 1988, and Namurotypus sippeli Brauckmann & Zessin, 1989, Rasnitsynala sigambrorum gen. et sp. n. is the fourth species of the Odonatoptera from the early Late Carboniferous (Early Penn- sylvanian: Namurian B, Marsdenian) deposits of the important Hagen-Vorhalle Konservat-Lagerstätte in Germany.
    [Show full text]
  • Changes to the Fossil Record of Insects Through Fifteen Years of Discovery
    This is a repository copy of Changes to the Fossil Record of Insects through Fifteen Years of Discovery. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88391/ Version: Published Version Article: Nicholson, David Blair, Mayhew, Peter John orcid.org/0000-0002-7346-6560 and Ross, Andrew J (2015) Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLosOne. e0128554. https://doi.org/10.1371/journal.pone.0128554 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE Changes to the Fossil Record of Insects through Fifteen Years of Discovery David B. Nicholson1,2¤*, Peter J. Mayhew1, Andrew J. Ross2 1 Department of Biology, University of York, York, United Kingdom, 2 Department of Natural Sciences, National Museum of Scotland, Edinburgh, United Kingdom ¤ Current address: Department of Earth Sciences, The Natural History Museum, London, United Kingdom * [email protected] Abstract The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009.
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae,
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • Libro 34(1).Indb 115 19/12/2007 20:39:30 116 Nel Et Al
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es /info/estratig/journal.htm Journal of Iberian Geology 34 (1) 2008: 115-122 The Odonatoptera of the Late Permian Lodève Basin (Insecta) Odonatoptera del Pérmico Superior de la Cuenca de Lòdeve (Insecta) A. N. Nel1*, G. Fleck1, R. Garrouste1, G. Gand2 1CNRS UMR 5202, Muséum National d’Histoire Naturelle, CP 50, Entomologie, 45 rue Buffon, F-75005, Paris, France e-mail: [email protected] 2 Laboratoire de Biogéosciences, CNRS, Université de Bourgogne, Centre des Sciences de la Terre; 6, boulevard Gabriel, F-21000 Dijon, France Received: 15/07/06 /Accepted: 27/12/06 Abstract The discovery of numerous and very diverse Odonatoptera in the Red Late Permian Lodève Basin questions its current recons- tructions of a dry to very dry palaeoclimate and palaeoenvironment. It rather suggests the presence of more or less permanent water bodies, surrounded by a diversity of terrestrial biotas. The discovery of large to very large Meganeuridae contradicts the alleged relations between the decrease of body and wing sizes of the insects during the late Permian as a direct consequence of the decrease of the oxygen atmospheric concentrations at that time. Keywords: Insecta, Odonatoptera, Late Permian, Lodève Basin, diversity, palaeoecology, gigatism, oxygen atmospheric concentrations. Resumen El descubrimiento de una numerosa y variada fauna de Odonatoptera en el Pérmico Superior rojo de la cuenca de Lodève pone en cuestión la hipótesis de un paleoclima seco a muy seco para este yacimiento. Sugiere la presencia de masas de agua más o menos permanentes, rodeadas por una importante diversidad de medios terrestres.
    [Show full text]
  • Wielkie Ważki Paleozoiku. Dlaczego Były Tak Wielkie I Dlaczego Nie Ma Obecnie Podobnie Wielkich? the Large Dragonflies of the Palaeozoic
    Odonatrix 16_4 (2020) Wielkie ważki paleozoiku. Dlaczego były tak wielkie i dlaczego nie ma obecnie podobnie wielkich? The large dragonflies of the Palaeozoic. Why were they so large and why do similar huge insects not exist nowadays? Edwin SIEREDZIŃSKI autor niezależny, ul. Górna 24, 26-600 Radom, mail: [email protected] Abstract The body sizes of recent insects are rather small; enormous body lengths or wingspans of several dozen cm are rare. For example, the largest contemporary damselfly Megaloprepus caerulatus has a wingspan of 19 cm. But during the Carboniferous and Permian periods, bigger “dragonflies” (griffenflies from the order Meganisoptera) did exist; with wingspans of over 70 cm, the Meganeuridae were the largest ever flying insects. To explain these great sizes, factors such as oxygen concentration and the evolutionary arms race between herbivorous and carnivorous insects have been invoked. However, these explanations do not go far enough, because many other factors have not been taken into consideration, for example, the evolution of higher verte- brates during the late Palaeozoic, and the morphological and physiological limitations of the in- sect body. These aspects will have been crucial to the existence of giant insects such as Meganeura and Meganeuropsis. Most probably, such large dragonflies and damselflies (as well as other insects) are no longer extant because the bodies of higher vertebrates are more efficient. Large insects simply lose out against small and medium-sized vertebrates, as demonstrated by the competition between the New Zealand weta and rodents (kiore and brown rat), and the ex- tinction of Labidura herculeana. Key Words. Palaeozoic, Odonata, dragonflies, size, Meganeura, palaeontology Wstęp Współczesne owady najczęściej kojarzą się ze zwierzętami o relatywnie niewielkich rozmiarach ciała.
    [Show full text]
  • Odonatological Abstract Service
    Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Martin Lindeboom, Silberdistelweg 11, D-72113 Ammerbuch, Germany. Tel. ++49 (0)7073 300770; E-mail: [email protected] Dr. Klaus Reinhardt, Dept Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. Tel. ++44 114 222 0105; E-mail: [email protected] Martin Schorr, Schulstr. 7B, D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: [email protected] Published in Rheinfelden, Germany and printed in Trier, Germany. ISSN 1438-0269 lish) [General on Anisoptera in North Carolina, USA.] 1997 Address: not stated 8888. Ihssen, G. (1997): Florida vom 15.03. bis 8892. Vinebrooke, R.D.; Turner, M.A.; Kidd, K.A.; 05.04.1994. Ein naturkundliches Reisetagebuch mit Hann, B.J.; Schindler, D.W. (2001): Truncated foodweb ausführlicher Behandlung der Libellenfunde (Odonata). effects of omnivorous minnows in a recovering acidified Naturkundliche Reiseberichte 6: 1-53. (in German) lake. J. N. Am. Benthol. Soc. 20(4): 629-642. (in Eng- [Detailed report on a trip to Florida, USA between 15-III. lish) ["Cyprinids (Margariscus margarita, Phoxinus spp., and 5-IV-1994] Address: Ihssen, G., Timm-Kröger-Weg Pimephales promelas) have resumed reproduction in a 6, 22335 Hamburg, Germany boreal headwater lake (Lake 302S, Experimental Lakes Area, northwestern Ontario) that is recovering from experimental acidification. Concomitant changes to the 2000 littoral food web suggested that these omnivorous 8889. Miyashita, M. (2000): Studies on the method for minnows suppressed the development of green algal assessment of the habitat of the damselfly Morto- mats, termed metaphyton.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]