Magnetoresistance of N-Type Magnesium Germanide Soo Nyong Lee Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Magnetoresistance of N-Type Magnesium Germanide Soo Nyong Lee Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Magnetoresistance of n-type magnesium germanide Soo Nyong Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Condensed Matter Physics Commons Recommended Citation Lee, Soo Nyong, "Magnetoresistance of n-type magnesium germanide " (1968). Retrospective Theses and Dissertations. 4607. https://lib.dr.iastate.edu/rtd/4607 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 69-9870 LEE, Soo Nyong, 1936- MAGNETORESISTANCE OF N-TYPE MAGNESIUM GERMANIDE. Iowa State University, Ph.D., 1968 Physics, solid state University Microfilms, Inc., Ann Arbor, Michigan MAGNETORESISTANCE OF N-TYPE MAGNESIUM GERMANIDE by Soo Nyong Lee A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physics Approved: Signature was redacted for privacy. In Charg of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames, Iowa 1968 ii TABLE OF CONTENTS ABSTRACT iii INTRODUCTION 1 A. Magnetoresistance 1 B. Properties of Mg^Ge 3 C. Purpose of This Investigation 8 THEORY 9 A. Magnetoconductivity Tensor Components 9 B. Experimental Approach 14 C. Energy Surfaces of the Many-Valley Type 17 EXPERIMENTAL PROCEDURE 28 A. Preparation of Samples 28 B. Measurements 35 EXPERIMENTAL RESULTS 52 A. Hall Coefficient and Resistivity 52 B. Magnetoresistance 65 DISCUSSION 91 A. Conduction Band Model 91 B. Hall Coefficient 93 C. Energy Separation Between A- and C-Minima 97 D. Resistivity 99 E. Hall Mobility F. Magnetoresistance iii VI. CONCLUSION AND RECOMMENDATIONS 105 A. Conclusion 106 B. Future Work 107 VII. LITERATURE CITED 109 VIII. ACKNOWLEDGMENTS 114 IX. APPENDIX 115 iv LIST OF FIGURES Figure 1. Crystal structure of MgoGe. Eight Mg atoms are at ±1/4/ ±1/4, ±1/4. Four Ge atoms are at 0,0,0; 0,1/2,1/2; 1/2,0,1/2; 1/2,1/2,0. 4 Figure 2. Sample orientations. Magnetoresistance coef­ ficients were measured along <ÏÏ2>, 45°, <111> and 135° directions. 15 Figure 3. Constant energy ellipsoids for a many valley semiconductor. 20 Figure 4. Method for growth of single crystals of MggGe. 30 Figure 5. Orientations of a magnetoresistance sample. 32 Figure 6. Orientation of single crystals. 34b Figure 7. Arrangement of the probes attached to the sam­ ple. Probes 1 and 2 are current probes, 3 and 4 are for resistance and magnetoresistance measurements, and 3, 4, and 5 are for Hall voltage measurements. 36 Figure 8. Sample holder with spring contact probes. 38 Figure 9. Modified sample holder with resistance probe distance of 1.27 mm. 41 Figure 10. Overall view of sample holder. Two teflon wheels guide the sample holder in an axial rotation. 42 Figure 11. Block diagram of the magnetoresistance apparatus. 45 Figure 12. Measurement of Hall voltage. 49 Figure 13. Temperature dependence of Hall coefficients. C-samples show Hall coefficient maxima just before the onset of intrinsic conduction. 55 Figure 14. Temperature dependence of resistivities. Sample Bl shows the sharpest shape in the extrinsic region. For C-samples the resistivity suddenly decreases near 250K with increasing temperature indicating that electrons move up into a higher" band where they have a higher mobility. 58 V Figure 15, Field dependence of Hall coefficients. The Hall coefficients are nearly independent of the magnetic field up to 7k gauss. 61 Figure 16, Temperature dependence of Hall mobilities. For A-samples the Hall mobility varies as T-1.6 at high temperatures indicating that acoustic mode scattering is dominant. The purer samples C and D show quite low mobility values at low temperatures and all samples show similar mobility values above 300K. 62b Figure 17, Hall mobility as a function of carrier concen­ tration. The data points 7B1, 7B3 and llBl are taken from the earlier report by Redin et al. (48). The Hall mobilities at 77K for six additional samples/ JlA/ J8A, J8B, JMPl and PlD, are also shown in the figure. The solid line shows the Hall mobilities at 77K, the dashed line shows the Hall mobilities at 300K. The large variation in Hall mobilities at 77K disappears at 300K. 64b Figure 18, Effect of Mg distillation on electrical prop­ erties of MggGe. 67 Figure 19. Angular dependence of the magnetoresistance coefficients at 77K. A, B, C, and D samples show distinctive differences in their angu­ lar dependence. 69 Figure 20. Dependence of the magnetoresistance upon magnetic field. The magnetoresistance varies as the square of the magnetic field at low fields. 72 Figure 21. Magnetoresistance of MggGe. 73 Figure 22. Magnetoresistance as a function of carrier concentration for 77K, 165K and 250K. The magnetoresistance increases sharply near n=1.5xlO^^ cm~^ with decreasing carrier concentration. 74 Figure 23. Seitz coefficients b+ c and d are plotted as functions of carrier concentration. A-sam­ ples and Bl sample show the symmetry relation of <100> ellipsoids (b + c= -d and d < 0). 83 vi Figure 24. Temperature dependence of the anisotropy parameter K for A-samples and Bl sample. 85b Figure 25. Temperature dependence of the ratio Hall mobility to conduction mobility for A-samples and Bl sample. ^ 89 Figure 26. The temperature dependence of the Hall and conduction mobilities. At high temperatures the acoustic mode scattering is dominant, but at low temperatures ionized impurity scattering is important. 90 Figure 27. Conduction band model for Mg^Ge. 92 Figure 28. The quantities x= n^j^ and y=it:p-c plotted as a function of temperature for different samples. 95 vii LIST OF TABLES Table 1. Values of anisotropy factors for conductivity coefficients in case of single ellipsoid. 23 Table 2. Anisotropy factors for systems of ellipsoids having cubic symmetry. 24 Table 3. Inverse Seitz coefficients for systems of ellipsoids having cubic symmetry. 25 Table 4. Dimensions and characteristics of n-type Mg^Ge samples. 53 Table 5. Galvanomagnetic coefficients. 75 Table 6. Temperature dependence of Hall and conduction mobilities. 87 viii ABSTRACT The electrical resistivity. Hall coefficient and weak field magnetoresistance were measured from 5OK to 350K for a number of n-type Mg^Ge samples having carrier concentra­ tions at 300K from 1.0 x 10^^ cm~^ to 8.7 x 10^^ cm~^. Our data suggests the possibility of a triple conduction band for MggGe. The highest band is characterized by <100> ellipsoids. At 77K the electron Hall mobility = 2000 cm /volt-sec and the anisotropy parameter K = = 1.6. This band seems to be deformed near the bottom edge so that 9 for electrons near the bottom of the band jXjj = 4000 cm /volt- sec and K = 3.5 at 77K. The next highest band minima also lie along <100> directions, but the mobility of the charge carriers in this band is only one-tenth that of the charge carriers in the highest band. The energy separation of the two bands is estimated to be 0.03 + 0.005 eV. The lowest band minima appeared to be located either in the <110> or <111> directions, or near these directions. The effective — • M masses of the electrons are estimated to be m=0.63 m^ and m* = 0.25 m^ for the higher part of the highest band. The conduction effective mass of the electrons in the second * highest band is estimated to be m = 0.75 m^. The conduction —1 52 mobility varied as T" * at temperatures above 150K for most samples indicating acoustic mode scattering was dominant at the higher temperatures. 1 I. INTRODUCTION A. Magnetoresistance When a magnetic field is applied to a conductor its resistance changes. This effect is called magnetoresistance. The study of this effect provides a knowledge of the band structure and the scattering mechanisms which are important for understanding the transport properties of semiconductors. The magnetoresistance was first studied by Gantz (17) and extensively investigated by Harding (23), Wilson (60) and Davis (11) in the 1930's. The theory was developed on isotropic materials with the magnetic field perpendicular to the current. Davis (11) extended the theory to include anisotropic materials and arbitrary directions of the magnetic field. However, the theory was so general that the solution could not be expressed in a closed form. In 1950, Seitz (50) derived in closed form a general equation for the magneto­ resistance which applied to semiconducting crystals possess­ ing cubic symmetry. This equation initiated many important studies of the magnetoresistance in semiconductors. The study of magnetoresistance became a useful tool for investigating the band structure and the scattering mechanism in many semiconductors (4). Conduction band min­ ima in electron energies for n-type Ge were found by this method to consist of <111> ellipsoids (46, 42, 22, 20) with 2 an anisotropy in mobility ) of about 20 both at room temperature, 300K, and at liquid helium temperature, 4.2K (6, 22, 33). These facts were confirmed by cyclotron resonance experiments (13). The conduction band of Si was found to have <100> minima by magnetoresistance studies (45, 20, 5, 29) with mobility anisotropies of about 5 at room temperature and at 80K. Similar mobility anisotropies were later obtained by cyclotron resonance at low temperatures (12, 13, 47). Early magnetoresistance measurements on III - V semi­ conductors indicated that a spherical energy surface at k = 0 in the Brillouin zone where k is the wave-vector.
Recommended publications
  • Shubnikov-De Haas-Like Quantum Oscillations in Artificial One
    Shubnikov-de Haas-like Quantum Oscillations in Artificial One-Dimensional LaAlO3/SrTiO3 Electron Channels Guanglei Cheng1,2,3,5, Anil Annadi2,3, Shicheng Lu2,3, Hyungwoo Lee4, Jung-Woo Lee4, Mengchen Huang2,3, Chang-Beom Eom4, Patrick Irvin2,3 and Jeremy Levy2,3* 1CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA. 3Pittsburgh Quantum Institute, Pittsburgh, PA, 15260, USA. 4Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. 5Hefei National Laboratory for Physical Sciences, Hefei 230026, China * E-mail: [email protected] Abstract: The widely reported magnetoresistance oscillations in LaAlO3/SrTiO3 heterostructures have invariably been attributed to the Shubnikov-de Haas (SdH) effect, despite a pronounced inconsistency with low-field Hall resistance measurements. Here we report SdH-like resistance oscillations in quasi-1D electron waveguides created at the LaAlO3/SrTiO3 interface by conductive atomic force microscopy lithography. These oscillations can be directly attributed to magnetic depopulation of magnetoelectric subbands. Our results suggest that the SdH oscillations in 2D SrTiO3-based systems may originate from naturally forming quasi-1D channels. SrTiO3-based interfaces, and in particular the LaAlO3/SrTiO3 (LAO/STO) interface [1], combine the motif of semiconductor heterostructures such as GaAs/AlGaAs, with the wide- ranging physical phenomena of complex-oxides. The LAO/STO system exhibits a wide range of gate-tunable phenomena including superconductivity [2,3], magnetism [4], spin-orbit coupling [5,6] and electron pairing without superconductivity [7].
    [Show full text]
  • Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections
    Review Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections Hui-Min Shen 1, Liang Hu 2,* and Xin Fu 2 1 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; [email protected] 2 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310028, China; [email protected] * Correspondence: [email protected]; Tel.: +86-571-8795-3395 Received: 26 November 2017; Accepted: 5 January 2018; Published: 7 January 2018 Abstract: With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.
    [Show full text]
  • 1 Large Linear Magnetoresistance and Shubnikov-De Hass
    Large Linear Magnetoresistance and Shubnikov-de Hass Oscillations in Single Crystals of YPdBi Heusler Topological Insulators Wenhong Wang 1, Yin Du1, Guizhou Xu1, Xiaoming Zhang1, Enke Liu1, Zhongyuan Liu 2,Youguo Shi1, Jinglan Chen1, Guangheng Wu1, and Xixiang Zhang3 1 State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2 State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004, P. R. China 3 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300 K under a moderate magnetic field of 7 T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications. 1 Materials exhibiting large linear magnetoresistance (MR) have attracted intense research interest due to their potential applications in magnetic random access memory and magnetic sensors1. The MR of non-magnetic metals with open Fermi surfaces (e.g., Au) can be linear and non-saturating at high fields2.
    [Show full text]
  • Advance in Magnetoresistance Magnetometer Performances Applied in Eddy Current Sensor Arrays
    ADVANCE IN MAGNETORESISTANCE MAGNETOMETER PERFORMANCES APPLIED IN EDDY CURRENT SENSOR ARRAYS. L.Perez1, C.Dolabdjian1, W.Waché2, L.Butin2 1 GREYC UMR 6072 - ENSICAEN and University of Caen Basse-Normandie 2 CEGELEC, CNDT, Brétigny S/Orge Cedex France Abstract: The sensitivity of the magnetic sensor is important for many electromagnetic Non Destructive Evaluation (NDE) applications. Nevertheless, for successful defect detection, properties such as high linearity, large dynamic range and good spatial resolution are required. One solution comes in good using improved solid- state magnetic sensors based on Giant MagnetoResistance (GMR). In this way, we have implemented and improved elementary GMR magnetometer in order to develop NDE Eddy Current System (ECS) sensor arrays [1]. Elementary sensor operates in unshielded environment with very good performances, like high bandwidth (f > 100 kHz), very high slew-rate (> 30 T/s), high intrinsic dynamic (> 140 dB/√Hz at 100 Hz) and low total harmonic distortion (< 0.03 %). We compare their performances to some magnetic field sensors implemented in NDE System, focusing on the state of the art of high sensitivity magnetometer experimental investigation. The improved GMR magnetometer replaces here the detection coil used in conventional ECS, which is surrounding by an excitation setup using a classical coil. Besides the determination of its experimental performances in alternating current techniques or remanent field measurement, we present the implementation of improved GMR magnetometer dedicated to the measurement of deep lying cracks in conducting material like aluminum and ferromagnetic plates. Introduction: Classically, ElectroMagnetic NonDestructive Evaluation is based on probing local anomalies in the magnetic of the object under test or electromagnetic stray field of the object under test.
    [Show full text]
  • Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structures
    Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structures Dissertation by Jian Sun In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia July 2013 2 EXAMINATION COMMITTEE APPROVALS FORM The dissertation of Jian Sun is approved by the examination committee. Committee Chairperson: Dr. Jürgen Kosel Committee Member: Dr. Dirk Grundler Committee Member: Dr. Ian Foulds Committee Member: Dr. Markus Hadwiger 3 © 2013 Jian Sun All Rights Reserved 4 ABSTRACT Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structures Jian Sun In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields.
    [Show full text]
  • Magnetoresistance (MR) Transducers
    Magnetoresistance (MR) Transducers And How to Use Them as Sensors 1st. Edition, July 2004 Perry A. Holman, Ph.D. ii Copyright °c 2004 Honeywell International Inc. All rights reserved. Acknowledgments The author would like to thank Dr. James R. (Bob) Biard for many, many late night discussions on the subject. Also, Dr. Gilbert Morales for many discussions on the modeling methodology. The author would like to thank Jason Chilcote for help keeping the project on track, and having insights on several topics. Larry Rehn for allowing the time to complete the work. This work was typeset with LATEX 2", utilizing the book format from Amy Hen- drickson at TeXnology. P. A. H. iii 1 Introduction This chapter briefly discusses some background and historical information on mag- netism and magnetoresistance. Additionally, the scope and general direction of the book is covered. 1.1 SCOPE AND DIRECTION OF THE BOOK The scope of this book is to discuss magnetic sensors, and specifically magnetoresis- tive (MR, non-GMR) sensors. The attempt is to give a introductory level understand- ing of the topics of magnets, magnetoresistive devices, electronics for sensors, noise, and applications. Then, several of the topics will have additional sections that go into greater detail on the topic at hand. The hope is that as different problems are solved, there becomes a greater understanding of the topic, and more difficult problems need to be tackled. Thus, information is provided to continue progress on the subject. 1.2 A BRIEF HISTORY OF MAGNETS Mankind has known magnets for thousands of years. One of the earliest known form of magnets is loadstone (or lodestone), an iron oxide ore, originally mined from a material called magnetite.
    [Show full text]
  • The Discovery of Giant Magnetoresistance
    The 2007 Nobel Prize in Physics The 2007 Nobel Prize in Physics The Discovery of Giant Magnetoresistance Compiled by the Class for Physics of the Royal Swedish Academy of Sciences The Royal Swedish Academy of Sciences (Kungl. Vetenskapsakademien) Information Department P. O. Box 50005 SE-104 05 Stockholm, Sweden E-mail: [email protected] Website: www.kva.se 1. INTRODUCTION fields. The most useful material has been discovered materials showing a very The phenomenon called magnetoresis- an alloy between iron and nickel, Fe20Ni80 large magnetoresistance, now known as tance (MR) is the change of resistance of (permalloy). In general, however, there giant magnetoresistance (GMR). These a conductor when it is placed in an external was hardly any improvement of the per- materials are so called magnetic multilay- magnetic field. For ferromagnets like iron, formance of magnetoresistive materials ers, where layers of ferromagnetic and cobalt and nickel this property will also since the work of Kelvin. The general non-magnetic metals are stacked on each depend on the direction of the external consensus in the 1980s was that it was not other [Fig. 1]. The widths of the individual field relative to the direction of the current possible to significantly improve on the layers are of nanometre size — i.e. only through the magnet. Exactly 150 years ago performance of magnetic sensors based a few atomic layers thick. In the original W. Thomson [1] (Lord Kelvin) measured on magnetoresistance. experiments leading to the discovery of the behaviour of the resistance of iron GMR one group, led by Peter Grünberg and nickel in the presence of a magnetic Therefore it was a great surprise when in [3], used a trilayer system Fe/Cr/Fe, field.
    [Show full text]
  • Nanoelectronics, Nanophotonics, and Nanomagnetics Report of the National Nanotechnology Initiative Workshop February 11–13, 2004, Arlington, VA
    National Science and Technology Council Committee on Technology Nanoelectronics, Subcommittee on Nanoscale Science, Nanophotonics, and Nanomagnetics Engineering, and Technology National Nanotechnology Report of the National Nanotechnology Initiative Workshop Coordination Office February 11–13, 2004 4201 Wilson Blvd. Stafford II, Rm. 405 Arlington, VA 22230 703-292-8626 phone 703-292-9312 fax www.nano.gov About the Nanoscale Science, Engineering, and Technology Subcommittee The Nanoscale Science, Engineering, and Technology (NSET) Subcommittee is the interagency body responsible for coordinating, planning, implementing, and reviewing the National Nanotechnology Initiative (NNI). The NSET is a subcommittee of the Committee on Technology of the National Science and Technology Council (NSTC), which is one of the principal means by which the President coordinates science and technology policies across the Federal Government. The National Nanotechnology Coordination Office (NNCO) provides technical and administrative support to the NSET Subcommittee and supports the subcommittee in the preparation of multi- agency planning, budget, and assessment documents, including this report. For more information on NSET, see http://www.nano.gov/html/about/nsetmembers.html . For more information on NSTC, see http://www.ostp.gov/cs/nstc . For more information on NNI, NSET and NNCO, see http://www.nano.gov . About this document This document is the report of a workshop held under the auspices of the NSET Subcommittee on February 11–13, 2004, in Arlington, Virginia. The primary purpose of the workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies. About the cover Cover design by Affordable Creative Services, Inc., Kathy Tresnak of Koncept, Inc., and NNCO staff.
    [Show full text]
  • Development of Gallium Nitride Based Dilute Magnetic Semiconductors for Magneto-Optical Applications
    DEVELOPMENT OF GALLIUM NITRIDE BASED DILUTE MAGNETIC SEMICONDUCTORS FOR MAGNETO-OPTICAL APPLICATIONS By GERALD T. THALER, JR. A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 This dissertation is dedicated to my family and friends. ACKNOWLEDGMENTS I would like to thank Dr. Cammy Abernathy for the guidance, support, and encouragement that enabled me to improve in all areas, both professionally and personally. I thank Dr. Stephen Pearton for serving on my committee, and for his support and advice on my professional development. I also thank Dr. Fan Ren, Dr. David Norton, and Dr. Rajiv Singh from serving on my committee. I especially thank everyone in my family for their support and encouragement throughout my educational odyssey. Special thanks go to my parents and siblings for persevering with me. The values and work ethic learned from my family members made all of this work possible. I acknowledge Prof. Devki Talwar (of the Physics Department at Indiana University of Pennsylvania) for his guidance during my undergraduate career, for introducing me to the field of GaN research, and for recommending Materials Science and Engineering as a potential area of graduate study. The research experiences gained while working at HY-Tech Research Corporation in Radford, Virginia had a tremendous impact on my PhD path. Many thanks go to Dr. Ed Yadlowsky, Dr. Bob Hazelton, Dr. John Mochella, Dr. Chris Klepper, Caterina Vidoli and Eric Carlson for all their support and discussions. Numerous people from the University of Florida that need to be acknowledged.
    [Show full text]
  • Manganese in Indium Arsenide: Charge Switching and Electronic Structure on the Atomic Scale
    Manganese in Indium Arsenide: Charge Switching and Electronic Structure on the Atomic Scale Dissertation zur Erlangung des Doktorgrades im Department Physik der Universität Hamburg vorgelegt von Felix Marczinowski aus Berlin Hamburg 2010 Gutachter der Dissertation: Prof. Dr. Roland Wiesendanger Prof. Dr. Wolfgang Hansen Gutachter der Disputation: Prof. Dr. Roland Wiesendanger Prof. Dr. Detlef Heitmann Datum der Disputation: 21. Mai 2010 Vorsitzender des Prüfungsausschusses: Prof. Dr. Michael Rübhausen Vorsitzender des Promotionsausschusses: Prof. Dr. Jochen Bartels Leiterin des Departments Physik: Prof. Dr. Daniela Pfannkuche Dekan der MIN-Fakultät: Prof. Dr. Heinrich Graener i Abstract In this thesis investigations of individual manganese acceptors in the (110) sur- face of manganese-doped indium arsenide are presented. Acceptors in different embedding depths below the surface were studied by low temperature scanning tunneling microscopy and spectroscopy. The charging and decharging of individual Mn acceptors with the STM tip is demonstrated. It can be detected in topographic measurements as well as in measurements of the current and the differential conductance. In maps of dif- ferential conductance voltage dependent rings of increased conductance around acceptors indicate the transition between the neutral and the negative charge state. The observation can be understood when the band-bending in the sample is taken into account. This increased differential conductance is not related to impurity states but can be explained as a compressed host density of states due to the modified local electrical potential between the two charge states. Asimple numerical model is presented which is able to fully and accurately reproduce the observed effects. The model includes the local band-bending caused bythe tip as well as by the impurity charge.
    [Show full text]
  • Giant Magnetoresistance (GMR) –Spin Filtering and Spin Momentum Transfer
    NYU NYU Spins Dynamics in Nanomagnets Outline I. Spin-Transport and Transfer Basics Andrew D. Kent –Giant magnetoresistance (GMR) –Spin filtering and spin momentum transfer II. Spin-Transfer Induced Magnetization Dynamics Department of Physics, New York University –Landau-Lifshitz-Gilbert dynamics and spin-torque –Current threshold for excitations and stability diagrams III. Experiments Lecture 1: Magnetic Interactions and Classical Magnetization –Point contacts, nanopillars Dynamics –dc transport, noise, high frequency characteristics Lecture 2: Spin Current Induced Magnetization Dynamics IV. Spin-Transfer MRAM Lecture 3: Quantum Spin Dynamics in Molecular Nanomagnets –Ultimate miniaturization of MRAM V. Summary References !"#$%&'()#*#+,)#-)./'()-)"+/#0$#1(2"3)(&4/#&(0'5#.()#6%/57.8)6#97)$+:#+0&)+,)(#;%+,#+,0/)#0$#<)(+4/# &(0'5#9(%&,+:=#>,)#8?.@%/#."6#@?.@%/#()5()/)"+#+,)#()/%/+."A)#A,."&)#."6#)@+)(".7#-.&")+%A#$%)76B#()/5)A? 1 2009 Boulder+%C)78=# School,>,)# Lecture)@5)(%- 2 )"+/#/,0;#.#-0/+#/%&"%$%A."+#")&.+%C)#-.&")+0()/%/+."A)#$0(#+,)#+(%7.8)(#./#;)77#./# 2 2009 Boulder School, Lecture 2 Physics 2007+,)#-'7+%7.8)(/=#>,)#/8/+)-/#+0#+,)#(%&,+B#%"C07C%"&#7.(&)#/+.AD/#0$#7.8)(/B#/,0;#.#6)A()./10/15/2007)#0$#()/% 08:19/+." APM)# 38#.7-0/+#EFG#;,)"#/'3H)A+)6#+0#.#-.&")+%A#$%)76=#>,)#)$$)A+#%/#-'A,#/-.77)(#$0(#+,)#/8/+)-#+0#+,)# 7)$+B#"0+#0"78#3)A.'/)#+,)#/8/+)-#%/#-)()78#.#+(%7.8)(#3'+#.7/0#3)A.'/)#+,)#)@5)(%-)"+/#7)6#38#1(2"3)(&# ;)()#-.6)#.+#(00-#+)-5)(.+'()B#;,%7)#+,)#)@5)(%-)"+/#()50(+)6#38#<)(+#."6#A0?;0(D)(/#;)()#5)(? $0(-)6#.+#CGiant)(8#70;#+)-
    [Show full text]
  • Researchers Around the World Are Looking to Develop Advanced Computers Based on Electrons’ Spin, Rather Than Just Their Charge
    Spintronics The spin doctors Researchers around the world are looking to develop advanced computers based on electrons’ spin, rather than just their charge. Matthew Chalmers examines how close the promised devices are to becoming reality DAVID AWSCHALOM DAVID 46 | Chemistry World | May 2009 www.chemistryworld.org It’s a promise perpetuated in Processing problems — for example due to weaker ‘spin- In short popular magazines, academic Spintronic data storage devices orbit’ coupling (the interaction papers and grant proposals: hyper- based on magnetic metals are already Computing devices between an electron’s spin and its functional magnetoelectronic big business. They lie in the hard- based on electron spin motion through the electromagnetic computing devices that harness disk units of almost all computers, promise to be far faster field of the nucleus, which shifts the spin of electrons. By allowing and originate from the Nobel- and more powerful that atomic energy levels). Moreover, bits of information to be stored prize winning discovery of giant current devices, which in semiconductors such spin-orbit and processed natively in the same magnetoresistance (GMR) made process information effects can be tuned via band-gap material, rather than in the separate independently in 1988 by physicists using electron charge engineering, altering conduction memory and processor components Albert Fert and Peter Grünberg alone and valence bands and the chemical of today’s computers, ‘spintronics’ (see box). But the full promise of Today’s computer hard potential, which allows the spins could revolutionise information spintronics – storing and processing drives already exploit to be manipulated. In 1999 David technology. information together – cannot spintronic effects Awschalom’s group at the University Since the invention of the be realised with metals.
    [Show full text]