INFORMATION to USERS the Most Advanced Technology Has Been

Total Page:16

File Type:pdf, Size:1020Kb

INFORMATION to USERS the Most Advanced Technology Has Been Characterization of a [³H]-5- hydroxytryptamine binding site in rabbit brain Item Type text; Thesis-Reproduction (electronic) Authors Xiong, Wen-cheng, 1962- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 06:47:00 Link to Item http://hdl.handle.net/10150/291537 INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 1338085 Characterization of a [3H]-5-hydroxytryptamine binding site in rabbit brain Xiong, Wen-cheng, M.S. The University of Arizona, 1989 UMI 300 N.Zecb Rd. Ann Arbor, MI 48106 CHARACTERIZATION OF A [3H]-5-HYDR0XYTRYPTAMINE BINDING SITE IN RABBIT BRAIN by Wen-cheng Xiong A Thesis Submitted to the Faculty of the COMMITTEE ON PHARMACOLOGY AND TOXICOLOGY (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN TOXICOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 9 2 STATEMENT OF AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under the rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part made be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: APPROVED BY THESIS DIRECTOR This thesis has been approved on the date shown below: £21 dwne S David L. Nelson Date Associate Professor of Pharmacology and Toxicology To my husband, my parents, and brothers, with love. 4 ACKNOWLEDGMENTS I wish to express my most sincere thanks to my advisor Dr. David L. Nelson for his supervision, guidance and encouragement. Thanks goes to my graduate committee members Drs. Hugh E. Lai/d II and Henry I. Yamamura for their advice and suggestions. Thanks are also given to Linda Cornfield, Anne Killam, and Georgina Lambert for their assistance. Sincere appreciation goes to Anne Killam for her reading manuscripts and her time. 5 TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS 7 LISTS OF TABLES 10 ABSTRACT 12 INTRODUCTION 13 History of 5-HT receptors 13 Pharmacological classification of 5-HT receptors 16 Second messengers of 5-HT receptors 23 Molecular biology of 5-HT receptors 27 Distribution of 5-HT receptors 31 Rationales of this study 31 METHODS 33 Preparation of membranes for ligand-binding assays 33 [3H]5-HT binding assay—saturation studies 33 [3H]5-HT binding assay—inhibition studies 34 [3H]5-HT binding assay—GTP and cation regulation 35 [3H]5-HT binding assay—NEM inactivation 35 [3HJ5-HT binding assay—Distribution of the 5-HT binding sites in rabbit brain 36 Data analysis 36 Materials 37 RESULTS 39 Blockade of 5-HT^ ant* 5-HTjq binding sites in rabbit CN 39 Saturation analysis of [3H]5-HT binding in rabbit CN 41 Comparison of the pharmacological profiles of [3H]5-HT binding sites in rabbit and bovine CN after blockade of 5-HTj^ and 5-HTjq sites 44 6 TABLE OF CONTENTS—Continued Page Effects of GTP on [3H]5-HT binding to rabbit and bovine CN 64 Interaction of GTP and cations on [3H]5-HT binding 70 Inactivation of the binding sites by NEM 80 Distribution of the [3H]5-HT binding sites in rabbit brain 81 DISCUSSION 86 CONCLUSIONS 94 REFERENCES 95 7 LIST OF ILLUSTRATIONS Figure Page 1. 8-OH-DPAT and mesulergine competition studies with [3H]5-HT binding in the absence and presence of 100 nM 8-OH-DPAT and 100 nM mesulergine in rabbit CN 40 2. [3H]5-HT saturation studies in rabbit CN in the absence and presence of 100 nM 8-OH-DPAT and 100 nM mesulergine 42 3. Competition studies of 5-HT1A~selective drugs with the non-5-HTiA/non-5-HTiQ binding sites in rabbit CN 46 4. Competition studies of 5-HTig-selective drugs with the non-5-HTjA/non-5-HTjQ binding sites in rabbit CN 47 5. Competition studies of 5-HTjQ-selective drugs with the non-5-HTjA/non-5-HTjQ binding sites in rabbit CN 48 6. Competition studies of S-HTg-selective drugs with the non-5-HTiA/non-5-HT;L0 binding sites in rabbit CN 49 7. Correlations between the pK| values of for 3 the non-5-HTjA/non-5-HTic [ H]5-HT binding sites in rabbit and the 5-HT^^, 5-HTjg, 5-HTjq, and 5-HT2 sites 50 8. Correlations between the pKj values of compounds for the non-5-HT1A/non-5-HT2c binding sites in rabbit and bovine CN 54 9. Inhibition curves for spiperone and spirilene against non-5-HT1A/non-5-HTlc [3H]5-HT binding in rabbit and bovine CN 56 10. Chemical structures of spiperone and its analogs 57 LIST OF ILLUSTRATIONS—Continued Figure Page 11. Inhibition curves for ergonovine against 3 non-5-HT1A/non-5-HTlc [ H]5-HT binding in rabbit and bovine CN 60 12. Inhibtion curves for ergotamine and ergocryptine against the non-5-HTi^/non-5- HTjc [3H]5-HT binding in rabbit and bovine CN 61 13. Inhibtion curves for dihydroergotamine, dihydroergDcristine. and dihydroergocryptine against the non-5~HTiA/non-5-HTic [ 5- HT binding in rabbit and bovine CN 62 14. Effects of GTP on the non-5-HT^A/non-5-HTjQ [3H]5-HT binding in rabbit and bovine CN without calcium 65 15. Effect of GTP on agonist inhibition of [3H]5-HT binding to non-5-HTiA/non-5~HTic sites in rabbit and bovine CN without calcium 66 16. [3H]5-HT saturation studies in the presence and absence of 100 uM GTP in rabbit CN without calcium 67 17. [3H]5-HT sturation studies in the presence and absence of 100 uM GTP in bovine CN without calcium 68 18. Effects of GTP on the binding of [3H]5-HT in the precence of 100 nM 8-OH-DPAT and 100 nM mesulergine with or without calcium 72 19. Effects of GTP on agonist inhibition of [3H]5-HT binding to non-5-HTiA/non-5~HTic [3H]5-HT binding in rabbit and bovine CN in the presence of 3 mM calcium 74 9 LIST OF ILLUSTRATIONS—Continued Figure Page 20. [3H]5-HT saturation studies in the presence and absence of 100 uM GTP in the rabbit with 3 mM calcium 75 21. [3H]5-HT saturation studies in the presence and absence of 100 uM GTP in the bovine CN with 3 mM calcium 76 22. Cation effects on the non-5-HT1A/non-5-HTjQ [3H]5-HT binding sites in rabbit and bovine CM membranes 78 23. NEM sensitivity of the non-5-HTj^/non-5-HTjQ [3H]5-HT binding site in bovine and rabbit CN membranes 83 24. Regional distribution of specific [3H]5-HT binding in the absence or presence of 100 nM 8-OH-DPAT and 100 nM mesulergine in rabbit brain membranes 84 10 LIST OF TABLES Table Page 1. Drug affinities for 5-HT1A, 5-HT1B, 5-HTlc, 5-HT^q, and 5-HT2 receptors 17 2. Results of saturation experiments performed in rabbit and bovine CN with [3H]5-HT in the absence and presence of 100 nM 8-OH-DPAT and 100 nM mesulergine 43 3. Correlation between the non-5-HTjA/non-5- HTic [3H]5-HT binding in the rabbit CN and 5-HT1A, 5-HTjg, 5-HT^q, and 5-HT2 binding 51 4.
Recommended publications
  • TABLE 1 Studies of Antagonist Activity in Constitutively Active
    TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Evidence That Mcpp May Have Behavioural Effects Mediated by Central 5-Ht1c Receptors 1G.A
    Br. J. Pharmacol. (1988), 94, 137-147 Evidence that mCPP may have behavioural effects mediated by central 5-HT1c receptors 1G.A. Kennett & G. Curzon Department of Neurochemistry, Institute of Neurology, Queen Square, London WC1N 3BG 1 The effects of 1-(3-chlorophenyl)piperazine (mCPP) and 1-[3-(trifluoromethyl)phenyl] piperazine (TFMPP) on activity of rats in a novel cage, and on the rotorod and elevated bar co-ordination tests was examined. 2 Peripherally administered mCPP and TFMPP dose-dependently reduced locomotion, rearing, and feeding scores but not grooming of freely fed rats placed in a novel observation cage. Yawning behaviour was increased. Similar effects were also observed after injection of mCPP into the 3rd ventricle. 3 Co-ordination on a rotating drum of both untrained and trained rats was impaired following mCPP but co-ordination on an elevated bar was not. 4 The hypoactivity induced by mCPP was opposed by three antagonists with high affinity for the 5-hydroxytryptamine (5-HT1c) site; metergoline, mianserin, cyproheptadine and possibly also by a fourth antagonist mesulergine. Metergoline, mianserin and cyproheptadine also opposed the reduction in feeding scores. However, neither effect of mCPP was antagonized by the 5-HT2-receptor antagonists ketanserin or ritanserin, the 5-HT3-receptor antagonist ICS 205-930, the 5-HTlA and 5-HTIB-receptor antagonists (-)-pindolol, (-)-propranolol and (±)-cyanopindolol or the 5-HTIA-, 5-HT2- and dopamine receptor antagonist spiperone. The specific a2-adrenoceptor antagonist idazoxan was also without effect. 5 Hypoactivity induced by TFMPP was similarly antagonized by mianserin but unaffected by (±+-cyanopindolol. 6 These results suggest that the hypoactivity is mediated by central 5-HT1c-receptors and that mCPP and possibly TFMPP may be 5-HT1c-receptor agonists.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Skim - a Generalized Literature-Based Discovery System For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343012; this version posted October 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SKiM - A generalized literature-based discovery system for uncovering novel biomedical knowledge from PubMed Kalpana Raja1, John Steill1, Ian Ross2, Lam C Tsoi3,4,5, Finn Kuusisto1, Zijian Ni6, Miron Livny2, James Thomson1,7 and Ron Stewart1* 1Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA 2Center for High Throughput Computing, Computer Sciences Department, University of Wisconsin, Madison, WI, USA 3Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA 4Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA 5Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA 6Department of Statistics, University of Wisconsin, Madison, WI, USA 7Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA *Corresponding author Email: [email protected] Phone: (608) 316-4349 Home page: https://morgridge.org/profile/ron-stewart/ bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343012; this version posted October 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Literature-based discovery (LBD) uncovers undiscovered public knowledge by linking terms A to C via a B intermediate. Existing LBD systems are limited to process certain A, B, and C terms, and many are not maintained. We present SKiM (Serial KinderMiner), a generalized LBD system for processing any combination of A, Bs, and Cs.
    [Show full text]
  • Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans
    molecules Review Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans Paul Cumming 1,2,* , Milan Scheidegger 3 , Dario Dornbierer 3, Mikael Palner 4,5,6 , Boris B. Quednow 3,7 and Chantal Martin-Soelch 8 1 Department of Nuclear Medicine, Bern University Hospital, CH-3010 Bern, Switzerland 2 School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia 3 Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; [email protected] (M.S.); [email protected] (D.D.); [email protected] (B.B.Q.) 4 Odense Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark; [email protected] 5 Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark 6 Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark 7 Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, CH-8058 Zurich, Switzerland 8 Department of Psychology, University of Fribourg, CH-1700 Fribourg, Switzerland; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Hallucinogens are a loosely defined group of compounds including LSD, N,N- dimethyltryptamines, mescaline, psilocybin/psilocin, and 2,5-dimethoxy-4-methamphetamine (DOM), Citation: Cumming, P.; Scheidegger, which can evoke intense visual and emotional experiences. We are witnessing a renaissance of re- M.; Dornbierer, D.; Palner, M.; search interest in hallucinogens, driven by increasing awareness of their psychotherapeutic potential. Quednow, B.B.; Martin-Soelch, C. As such, we now present a narrative review of the literature on hallucinogen binding in vitro and Molecular and Functional Imaging ex vivo, and the various molecular imaging studies with positron emission tomography (PET) or Studies of Psychedelic Drug Action in single photon emission computer tomography (SPECT).
    [Show full text]
  • (+)Lysergic Acid Diethylamide, but Not Its Nonhallucinogenic Congeners, Is a Potent Serotonin 5HT Receptor Agonist1
    0022.3565/91/2583-0891$03.OO/O THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL ThERAPEUTICS Vol. 258, No. 3 Copyright © 1991 by The American Society for PharmacoIogj and Experimental Therapeutics Printed in U.S.A. (+)Lysergic Acid Diethylamide, but not Its Nonhallucinogenic Congeners, Is a Potent Serotonin 5HT Receptor Agonist1 KEVIN D. BURRIS, MARSHA BREEDING and ELAINE SANDERS-BUSH Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee Accepted for publication May 20, 1991 ABSTRACT Activation of central serotonin 5HT2 receptors is believed to be epithelial cells, with ECro values of 9 and 26 nM, respectively. the primary mechanism whereby lysergic acid diethylamide(LSD) The effect of (+)LSD in both systems was blocked by 5HT and other hallucinogens induce psychoactive effects. This hy- receptor antagonists with an order of activity consistent with pothesis is based on extensive radioligand binding and electro- interaction at 5HT1 receptors. Neither (+)-2-bromo-LSD nor physiological and behavioral studies in laboratory animals. How- lisunde, two nonhallucinogenic congeners of LSD, were able to ever, the pharmacological profiles of 5HT2 and 5HT1 receptors stimulate 5HT1 receptors in cultured cells or intact choroid are similar, making it difficult to distinguish between effects due plexus. In contrast, lisunde, like (+)LSD, is a partial agonist at to activation of one or the other receptor. For this reason, it was 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells of interest to investigate the interaction of LSD with 5HT1 transfected with 5HT2 receptor cDNA. The present finding that receptors. Agonist-stimulated phosphoinositide hydrolysis in rat (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1 choroid plexus was used as a direct measure of 5HT1 receptor receptor agonist suggests a possible role for these receptors in activation.
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0159073 A1 De Juan Et Al
    US 20110159073A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0159073 A1 de Juan et al. (43) Pub. Date: Jun. 30, 2011 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA A6F 2/00 (2006.01) (US); Signe E. Varner, Los (52) U.S. Cl. ........................................................ 424/427 Angeles, CA (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Featured is a method for instilling one or more bioactive (21) Appl. No.: 12/981,038 agents into ocular tissue within an eye of a patient for the treatment of an ocular condition, the method comprising con (22) Filed: Dec. 29, 2010 currently using at least two of the following bioactive agent delivery methods (A)-(C): (A) implanting a Sustained release Related U.S. Application Data delivery device comprising one or more bioactive agents in a (63) Continuation of application No. 1 1/175,850, filed on posterior region of the eye so that it delivers the one or more Jul. 5, 2005, now abandoned. bioactive agents into the vitreous humor of the eye; (B) instill ing (e.g., injecting or implanting) one or more bioactive (60) Provisional application No. 60/585,236, filed on Jul. 2, agents Subretinally; and (C) instilling (e.g., injecting or deliv 2004, provisional application No. 60/669,701, filed on ering by ocular iontophoresis) one or more bioactive agents Apr. 8, 2005. into the vitreous humor of the eye. Patent Application Publication Jun. 30, 2011 Sheet 1 of 22 US 2011/O159073 A1 Patent Application Publication Jun.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • WO 2016/106182 Al 30 June 2016 (30.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/106182 Al 30 June 2016 (30.06.2016) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61N 1/04 (2006.01) A61N 1/372 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61N 1/08 (2006.01) A61K 31/435 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61N 1/18 (2006.01) A61K 31/428 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61N 1/24 (2006.01) A61K 31/137 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, A61N 1/32 (2006.01) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (21) International Application Number: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, PCT/US20 15/0670 17 TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (22) International Filing Date: (84) Designated States (unless otherwise indicated, for every 2 1 December 2015 (21 .12.2015) kind of regional protection available): ARIPO (BW, GH, (25) Filing Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (26) Publication Language: English TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (30) Priority Data: DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 62/096,226 23 December 2014 (23.
    [Show full text]