Operational Amplifier Applications - Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Operational Amplifier Applications - Wikipedia, the Free Encyclopedia Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications Operational amplifier applications From Wikipedia, the free encyclopedia This article illustrates some typical applications of solid-state integrated circuit operational amplifiers. A simplified schematic notation is used, and the reader is reminded that many details such as device selection and power supply connections are not shown. The resistors used in these configurations are typically in the kΩ range. <1 kΩ range resistors cause excessive current flow and possible damage to the device. >1 MΩ range resistors cause excessive thermal noise and make the circuit operation susceptible to significant errors due to bias currents. Note: It is important to realize that the equations shown below, pertaining to each type of circuit, assume that it is an ideal op amp. Those interested in construction of any of these circuits for practical use should consult a more detailed reference. See the External links and References sections. Contents 1 Linear circuit applications 1.1 Differential amplifier 1.1.1 Amplified difference 1.1.2 Difference amplifier 1.2 Inverting amplifier 1.3 Non-inverting amplifier 1.4 Voltage follower 1.5 Summing amplifier 1.6 Integrator 1.7 Differentiator 1.8 Comparator 1.9 Instrumentation amplifier 1.10 Schmitt trigger 1.11 Inductance gyrator 1.12 Zero level detector 1.13 Negative impedance converter (NIC) 2 Non-linear configurations 2.1 Precision rectifier 2.2 Peak detector 2.3 Logarithmic output 2.4 Exponential output 3 Other applications 4 See also 5 References 6 External links Linear circuit applications 1 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications Differential amplifier The circuit shown is used for finding the difference of two voltages each multiplied by some constant (determined by the resistors). The name "differential amplifier" should not be confused with the "differentiator", also shown on this page. Differential amplifier Differential Zin (between the two input pins) = R1 + R2 Amplified difference Whenever R1 = R2 and Rf = Rg, Difference amplifier When R1 = Rf and R2 = Rg (including previous conditions, so that R1 = R2 = Rf = Rg): Inverting amplifier Inverts and amplifies a voltage (multiplies by a negative constant) Zin = Rin (because V - is a virtual ground) A third resistor, of value , added between the non-inverting input and ground, while not necessary, minimizes Inverting amplifier errors due to input bias currents. Non-inverting amplifier 2 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications Amplifies a voltage (multiplies by a constant greater than 1) (realistically, the input impedance of the op-amp itself, Non-inverting amplifier 1 MΩ to 10 TΩ) A third resistor, of value , added between the Vin source and the non-inverting input, while not necessary, minimizes errors due to input bias currents. Voltage follower Used as a buffer amplifier, to eliminate loading effects or to interface impedances (connecting a device with a high source impedance to a device with a low input impedance) Voltage follower (realistically, the differential input impedance of the op-amp itself, 1 MΩ to 1 TΩ) Summing amplifier Sums several (weighted) voltages When , and Rf independent Summing amplifier When Output is inverted Input impedance Zn = Rn, for each input (V - is a virtual ground) Integrator 3 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications Integrates the (inverted) signal over time (where Vin and Vout are functions of time, Vinitial is the output voltage of the integrator at time t = 0.) Integrating amplifier Note that this can also be viewed as a type of electronic filter. Differentiator Differentiates the (inverted) signal over time. The name "differentiator" should not be confused with the "differential amplifier", also shown on this page. Differentiating amplifier (where Vin and Vout are functions of time) Note that this can also be viewed as a type of electronic filter. Comparator Compares two voltages and outputs one of two states depending on which is greater Comparator Instrumentation amplifier Combines very high input impedance, high common-mode rejection, low DC offset, and other properties used in making very accurate, low-noise measurements Is made by adding a non-inverting buffer to each input of the differential amplifier to increase the input impedance. Instrumentation amplifier Schmitt trigger 4 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications A comparator with hysteresis Schmitt trigger Inductance gyrator Simulates an inductor. Inductance gyrator Zero level detector Voltage divider reference Zener sets reference voltage Negative impedance converter (NIC) 5 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications Creates a resistor having a negative value for any signal generator In this case, the ratio between the input voltage and the input current (thus the input resistance) is given by: for more information see the main article Negative impedance converter. Negative impedance converter Non-linear configurations Precision rectifier Behaves like an ideal diode for the load, which is here represented by a generic resistor RL. This basic configuration has some limitations. For more information and to know the configuration that is actually used, see the main article. Super diode Peak detector When the switch is closed, the output goes to zero volts. When the switch is opened for a certain time interval, the capacitor will charge to the maximum input voltage attained during that time interval. The charging time of the capacitor must be much shorter than the period of the highest appreciable frequency component of the input voltage. Peak detector Logarithmic output 6 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications The relationship between the input voltage vin and the output voltage vout is given by: Logarithmic configuration where IS is the saturation current. If the operational amplifier is considered ideal, the negative pin is virtually grounded, so the current flowing into the resistor from the source (and thus through the diode to the output, since the op-amp inputs draw no current) is: where ID is the current through the diode. As known, the relationship between the current and the voltage for a diode is: This, when the voltage is greater than zero, can be approximated by: Putting these two formulae together and considering that the output voltage Vout is the inverse of the voltage across the diode VD, the relationship is proven. Note that this implementation does not consider temperature stability and other non-ideal effects. Exponential output The relationship between the input voltage vin and the output voltage vout is given by: where IS is the saturation current. Exponential configuration Considering the operational amplifier ideal, then the negative pin is virtually grounded, so the current through the diode is given by: 7 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications when the voltage is greater than zero, it can be approximated by: The output voltage is given by: Other applications audio and video pre-amplifiers and buffers voltage comparators differential amplifiers differentiators and integrators filters precision rectifiers voltage regulator and current regulator analog-to-digital converter digital-to-analog converter voltage clamps oscillators and waveform generators Schmitt trigger Gyrator Comparator Active filter Analog computer See also Current-feedback operational amplifier Operational transconductance amplifier Frequency compensation References Paul Horowitz and Winfield Hill, "The Art of Electronics 2nd Ed. " Cambridge University Press, Cambridge, 1989 ISBN 0-521-37095-7 Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits," 3rd Ed., McGraw-Hill, New York, 2002 ISBN 0-07-232084-2 External links Introduction to op-amp circuit stages, second order filters, single op-amp bandpass filters, and a simple intercom (http://ourworld.compuserve.com/homepages/Bill_Bowden/opamp.htm) Op Amps for Everyone (http://focus.ti.com/lit/an/slod006b/slod006b.pdf) PDF A table of standard applications (http://www.rfcafe.com/references/electrical/opamps.htm) Hyperphysics — descriptions of common applications 8 of 9 2/2/07 10:50 AM Operational amplifier applications - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Operational_amplifier_applications (http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/opampvar.html) Single supply op-amp circuit collection (http://instruct1.cit.cornell.edu/courses/bionb440/datasheets/SingleSupply.pdf) PDF Op-amp circuit collection (http://www.national.com/an/AN/AN-31.pdf) PDF A Collection of Amp Applications (http://www.analog.com/UploadedFiles/Application_Notes/28080533AN106.pdf) PDF — Analog Devices Application note Basic OpAmp Applications (http://www.ligo.caltech.edu/~vsanni/ph5/BasicOpAmpApplications.pdf)
Recommended publications
  • Design of a Low Voltage Class-AB CMOS Super Buffer Amplifier with Sub Threshold and Leakage Control Rakesh Gupta
    International Journal of Engineering Trends and Technology (IJETT) – Volume 7 Number 1- Jan 2014 Design of a Low Voltage Class-AB CMOS Super Buffer Amplifier with Sub Threshold and Leakage Control Rakesh Gupta Assistant Professor, Electrical and Electronic Department, Uttar Pradesh Technical University, Lucknow Uttar Pradesh, India Abstract-- common problems like input common mode range, This paper describes a CMOS analogy voltage supper output swing, and linearity of the device. In the buffer designed to have extremely low static current resulting form to implement the desired analogue Consumption as well as high current drive capability. A device we apply the CMOS technology with low new technique is used to reduce the leakage power of voltage and low power techniques. Voltage supper class-AB CMOS buffer circuits without affecting dynamic power dissipation. The name of applied buffers are essential building blocks in analog and technique is TRANSISTOR GATING TECHNIQUE, mixed-signal circuits and processing systems, which gives the high speed buffer with the reduced low especially for applications where the weak signal power dissipation (1.105%), low leakage and reduced needs to be delivered to a large capacitive load area (3.08%) also. The proposed buffer is simulated at without being distorted To achieve higher density and 45nm CMOS technology and the circuit is operated at performance and lower power consumption, CMOS 3.3V supply[11]. Consumption is comparable to the devices have been scaled for more than 30 years. switching component. Reports indicate that 40% or Transistor delay times have decreased by more than even higher percentage of the total power consumption 30% per technology generation resulting in doubling is due to the leakage of transistors.
    [Show full text]
  • 1.5A, 24V, 17Mhz Power Operational Amplifier Datasheet (Rev. E)
    OPA564 www.ti.com SBOS372E –OCTOBER 2008–REVISED JANUARY 2011 1.5A, 24V, 17MHz POWER OPERATIONAL AMPLIFIER Check for Samples: OPA564 1FEATURES 23• HIGH OUTPUT CURRENT: 1.5A DESCRIPTION • WIDE POWER-SUPPLY RANGE: The OPA564 is a low-cost, high-current operational – Single Supply: +7V to +24V amplifier that is ideal for driving up to 1.5A into reactive loads. The high slew rate provides 1.3MHz – Dual Supply: ±3.5V to ±12V full-power bandwidth and excellent linearity. These • LARGE OUTPUT SWING: 20VPP at 1.5A monolithic integrated circuits provide high reliability in • FULLY PROTECTED: demanding powerline communications and motor control applications. – THERMAL SHUTDOWN – ADJUSTABLE CURRENT LIMIT The OPA564 operates from a single supply of 7V to 24V, or dual power supplies of ±3.5V to ±12V. In • DIAGNOSTIC FLAGS: single-supply operation, the input common-mode – OVER-CURRENT range extends to the negative supply. At maximum – THERMAL SHUTDOWN output current, a wide output swing provides a 20VPP (I = 1.5A) capability with a nominal 24V supply. • OUTPUT ENABLE/SHUTDOWN CONTROL OUT • HIGH SPEED: The OPA564 is internally protected against over-temperature conditions and current overloads. It – GAIN-BANDWIDTH PRODUCT: 17MHz is designed to provide an accurate, user-selected – FULL-POWER BANDWIDTH AT 10VPP: current limit. Two flag outputs are provided; one 1.3MHz indicates current limit and the second shows a – SLEW RATE: 40V/ms thermal over-temperature condition. It also has an Enable/Shutdown pin that can be forced low to shut • DIODE FOR JUNCTION TEMPERATURE down the output, effectively disconnecting the load. MONITORING The OPA564 is housed in a thermally-enhanced, • HSOP-20 PowerPAD™ PACKAGE surface-mount PowerPAD™ package (HSOP-20) with (Bottom- and Top-Side Thermal Pad Versions) the choice of the thermal pad on either the top side or the bottom side of the package.
    [Show full text]
  • Designing Linear Amplifiers Using the IL300 Optocoupler Application Note
    Application Note 50 Vishay Semiconductors Designing Linear Amplifiers Using the IL300 Optocoupler INTRODUCTION linearizes the LED’s output flux and eliminates the LED’s This application note presents isolation amplifier circuit time and temperature. The galvanic isolation between the designs useful in industrial, instrumentation, medical, and input and the output is provided by a second PIN photodiode communication systems. It covers the IL300’s coupling (pins 5, 6) located on the output side of the coupler. The specifications, and circuit topologies for photovoltaic and output current, IP2, from this photodiode accurately tracks the photoconductive amplifier design. Specific designs include photocurrent generated by the servo photodiode. unipolar and bipolar responding amplifiers. Both single Figure 1 shows the package footprint and electrical ended and differential amplifier configurations are discussed. schematic of the IL300. The following sections discuss the Also included is a brief tutorial on the operation of key operating characteristics of the IL300. The IL300 photodetectors and their characteristics. performance characteristics are specified with the Galvanic isolation is desirable and often essential in many photodiodes operating in the photoconductive mode. measurement systems. Applications requiring galvanic isolation include industrial sensors, medical transducers, and IL300 mains powered switchmode power supplies. Operator safety 1 8 and signal quality are insured with isolated interconnections. These isolated interconnections commonly use isolation 2 K2 7 amplifiers. K1 Industrial sensors include thermocouples, strain gauges, and pressure transducers. They provide monitoring signals to a 3 6 process control system. Their low level DC and AC signal must be accurately measured in the presence of high 4 5 common-mode noise.
    [Show full text]
  • Op-Amp Comparators  Model of a Schmitt Trigger
    1 Electronic Instrumentation Experiment 6 -- Digital Switching Part A: Transistor Switches Part B: Comparators and Schmitt Triggers Part C: Digital Switching Part D: Switching a Relay Part A: Transistors Analog Circuits vs. Digital Circuits Bipolar Junction Transistors Transistor Characteristics Using Transistors as Switches 2 Analog Circuits vs. Digital Circuits An analog signal is an electric signal whose value varies continuously over time. A digital signal can take on only finite values as the input varies over time. 3 • A binary signal, the most common digital signal, is a signal that can take only one of two discrete values and is therefore characterized by transitions between two states. • In binary arithmetic, the two discrete values f1 and f0 are represented by the numbers 1 and 0, respectively. 4 • In binary voltage waveforms, these values are represented by two voltage levels. • In TTL convention, these values are nominally 5V and 0V, respectively. • Note that in a binary waveform, knowledge of the transition between one state and another is equivalent to knowledge of the state. Thus, digital logic circuits can operate by detecting transitions between voltage levels. The transitions are called edges and can be positive (f0 to f1) or negative (f1 to f0). 1 positive negative positive edge 0 edges edge 5 Bipolar Junction Transistors The bipolar junction transistor (BJT) is the salient invention that led to the electronic age, integrated circuits, and ultimately the entire digital world. The transistor is the principal active device in electrical circuits. When inputs are kept relatively small, the transistor serves as an amplifier. When the transistor is overdriven, it acts as a switch, a mode most useful in digital electronics.
    [Show full text]
  • NTE7144 Integrated Circuit BIMOS Operational Amplifier W/MOSFET Input, Bipolar Output
    NTE7144 Integrated Circuit BIMOS Operational Amplifier w/MOSFET Input, Bipolar Output Description: The NTE7144 is an integrated circuit operational amplifier in an 8–Lead Mini–DIP type package that combines the advantages of high–voltage PMOS transistors with high–voltage bipolar transistors on a single monolithic chip. This device features gate–protected MOSFET (PMOS) transistors in the in- put circuit to provide very–high–input impedance, very–low–input current, and high–speed perfor- mance. The NTE7144 operates at supply voltages from 4V to 36V (either single or dual supply) and is internally phase–compensated to achieve stable operation in unity–gain follower operation. The use of PMOS field–effect transistors in the input stage results in common–mode input–voltage capability down to 0.5V below the negative–supply terminal, an important attribute for single–supply applications. The output stage uses bipolar transistors and includes built–in protection against dam- age from load–terminal short–circuiting to either supply–rail or to GND. Features: D MOSFET Input Stage: Very High Input Impedance Very Low Input Current Wide Common–Mode Input Voltage Range Output Swing Complements Input Common–Mode Range D Directly Replaces Industry Type 741 in Most Applications Applications: D Ground–Referenced Single–Supply Amplifiers in Automobile and Portable Instrumentation D Sample and Hold Amplifiers D Long–Duration Timers/Multivibrators (Microseconds – Minutes – Hours) D Photocurrent Instrumentation D Peak Detectors D Active Filters D Comparators D Interface in 5V TTL Systems and other Low–Supply Voltage Systems D All Standard Operational Amplifier Applications D Function Generators D Tone Controls D Power Supplies D Portable Instruments D Intrusion Alarm Systems Absolute Maximum Ratings: DC Supply Voltage (Between V+ and V– Terminals).
    [Show full text]
  • Example of a MOSFET Operational Amplifier
    Example of a MOSFET Operational Amplifier: This circuit is one I “designed” as an example for Engineering 1620. It is certainly not fully optimized and I am not sure it is free of errors. It is based on a 1.5 micron, P-well process and therefore uses an N-channel differential pair for its input. This is somewhat unusual because P-channel devices have lower intrinsic noise and are the device-type of choice for the input stage. I did this simply to avoid doing your SPICE assignment for you. The overall properties of the circuit are given in the table below. Amplifier Property Value A0 – DC Gain 86 DB (X20,000) fp – dominant pole position 400 Hz fGBW 8.0 MHz fU – unity gain frequency 5.6 MHz Output stage resistance at low frequency 277 K Zero position 10.7 MHz Slew Rate 710 6 V/sec Output stage quiescent current 65 a Opamp quiescent current 103 a Bias circuit quiescent current 104 a Total system quiescent current 210 a VDD 5.0 volts Total system power 1.1 mW MOSFET Operational Amplifier Gain and Phase 10 0 18 0 80 12 0 60 Gain 60 Phase 40 0 Gain (DB) 20 -60 Phase (deg.) 0 -120 -20 -180 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 Frequency (Hz) Phase margin = 60 deg. Parameter Table for MOSFET Opamp Example element model vds vgs vth vov id gm ro m1 nssb 0.748 0.851 0.547 0.304 3.77E-05 2.90E-04 5.54E+05 m10 nssb 3.368 0.851 0.547 0.304 4.12E-05 3.11E-04 8.09E+05 m12 nssb 0.711 0.711 0.546 0.165 3.51E-05 5.01E-04 5.05E+05 m13 nssb 0.838 0.851 0.547 0.304 3.79E-05 2.91E-04 5.92E+05 m14 nssb 3.078 1.079 0.840 0.239 3.51E-05
    [Show full text]
  • AN55 Power Supply Bypassing for High-Voltage Operational Amplifiers
    AN55 Power Supply Bypassing for High-Voltage Operatinal Amplifiers POWER SUPPLY BYPASSING FOR HIGH-VOLTAGE OPERATIONAL AMPLIFIERS With the introduction of Apex’s high-voltage amplifiers like PA89 and PA99, new issues arise in the realm of circuit board layout and power supply bypassing. Working with these amplifiers, designers quickly realize that the same rules do not apply between bypassing high- and low-voltage Op-Amps. This applications infor- mation is meant to assist in designing the bypass system in a high-voltage operational amplifier circuit and choosing the perfect capacitors for use in such designs. THE NEED FOR POWER SUPPLY BYPASSING Before finding a couple of high-voltage capacitors and tacking them onto your supply rails, it is vital to realize the purpose of these capacitors and what we need them to do. Power supply bypass capacitors are there to stabilize the supply voltages of a circuit. Logically, the next question to answer would be, “What causes supply voltages to change?” This list can go on, but the most common reasons for changing supply voltages are power interruptions, high-frequency voltage/current spikes, and high-current draws. Figure 1: Power Supply Rejection Chart of PA89 100 80 60 40 20 WŽǁĞƌ^ƵƉƉůLJZĞũĞĐƟŽŶ͕W^Z;ĚͿ 0 1 10100 1k 10k 100k1M 10M Frequency, F (Hz) The first two entries on the list can be lumped into one category called “high-frequency events.” One close look at the datasheet for PA89 yields the Power Supply Rejection chart. As the frequency increases, power supply rejection falls off rather quickly. For example, if the power supply rail experiences a 100 kHz spike, then as much as 1% of that high-frequency voltage change will show up on the output.
    [Show full text]
  • A Differential Operational Amplifier Circuit Collection
    Application Report SLOA064A – April 2003 A Differential Op-Amp Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT All op-amps are differential input devices. Designers are accustomed to working with these inputs and connecting each to the proper potential. What happens when there are two outputs? How does a designer connect the second output? How are gain stages and filters developed? This application note answers these questions and gives a jumpstart to apprehensive designers. 1 INTRODUCTION The idea of fully-differential op-amps is not new. The first commercial op-amp, the K2-W, utilized two dual section tubes (4 active circuit elements) to implement an op-amp with differential inputs and outputs. It required a ±300 Vdc power supply, dissipating 4.5 W of power, had a corner frequency of 1 Hz, and a gain bandwidth product of 1 MHz(1). In an era of discrete tube or transistor op-amp modules, any potential advantage to be gained from fully-differential circuitry was masked by primitive op-amp module performance. Fully- differential output op-amps were abandoned in favor of single ended op-amps. Fully-differential op-amps were all but forgotten, even when IC technology was developed. The main reason appears to be the simplicity of using single ended op-amps. The number of passive components required to support a fully-differential circuit is approximately double that of a single-ended circuit. The thinking may have been “Why double the number of passive components when there is nothing to be gained?” Almost 50 years later, IC processing has matured to the point that fully-differential op-amps are possible that offer significant advantage over their single-ended cousins.
    [Show full text]
  • 9 Op-Amps and Transistors
    Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 9 – OPERATIONAL AMPLIFIER AND TRANSISTOR CIRCUITS . Op-amp basic concepts and sub-circuits . Practical aspects of op-amps; feedback and stability . Nodal analysis of op-amp circuits . Transistor models . Frequency response of op-amp and transistor circuits 1 THE OPERATIONAL AMPLIFIER: BASIC CONCEPTS AND SUB-CIRCUITS 1.1 General The operational amplifier is a universal active element It is cheap and small and easier to use than transistors It usually takes the form of an integrated circuit containing about 50 – 100 transistors; the circuit is designed to approximate an ideal controlled source; for many situations, its characteristics can be considered as ideal It is common practice to shorten the term "operational amplifier" to op-amp The term operational arose because, before the era of digital computers, such amplifiers were used in analog computers to perform the operations of scalar multiplication, sign inversion, summation, integration and differentiation for the solution of differential equations Nowadays, they are considered to be general active elements for analogue circuit design and have many different applications 1.2 Op-amp Definition We may define the op-amp to be a grounded VCVS with a voltage gain (µ) that is infinite The circuit symbol for the op-amp is as follows: An equivalent circuit, in the form of a VCVS is as follows: The three terminal voltages v+, v–, and vo are all node voltages relative to ground When we analyze a circuit containing op-amps, we cannot use the
    [Show full text]
  • Design of CMOS Schmitt Trigger Munish Kumar, Parminder Kaur, Sheenu Thapar
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 1, July 2012 Design of CMOS Schmitt Trigger Munish Kumar, Parminder Kaur, Sheenu Thapar voltage is applied at the input, both M1 andM2 are in OFF Abstract— This paper presents comparison among various condition while M4 and M5 are in ON condition and output Schmitt triggers on the basis of their hysteresis width and is at high logic level. When the input reaches to threshold average power consumed. Hysteresis width is improved by using voltage of M1 transistor then M1 will be on , while M2 two feedback loops as compared to conventional CMOS Schmitt trigger whose hysteresis width is fixed. All Schmitt trigger remains OFF and at this time output will be high M3 will be circuits have been realized using .25um and .18µm CMOS on , so M1 Try to pull down the node between M1 and M2 technology and simulation results are presented. while M3 try to pulls up this node to voltage VDD-VT , so transistor M2 stays the output to HIGH logic level , now Index Terms— Hysteresis Width, Static Power Dissipation, Dynamic Power Dissipation. when the input rises up to the threshold voltage of M2 then output switches to low logic level, so effectively our I. INTRODUCTION switching point shifted to higher voltage referred as VIH. Similar in case when input is falling from higher logic level Schmitt triggers are bistable networks that are widely used then PMOS‘s comes into picture and switching point at to enhance the immunity of a circuit to noise and output is shifted to some lower voltage referred as VIH.
    [Show full text]
  • High-Speed Rail-To-Rail Class-AB Buffer Amplifier with Compact
    electronics Article High-Speed Rail-to-Rail Class-AB Buffer Amplifier with Compact, Adaptive Biasing for FPD Applications Chang-Ho An 1,* and Bai-Sun Kong 2,3,* 1 Department of Digital Electronics, Daelim University College, 29 Imgok-ro, Dongan-gu, Anyang-si 13916, Gyeonggi-do, Korea 2 Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea 3 Department of Artificial Intelligence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea * Correspondence: [email protected] (C.-H.A.); [email protected] (B.-S.K.) Received: 21 October 2020; Accepted: 25 November 2020; Published: 29 November 2020 Abstract: A high-slew-rate, low-power, CMOS, rail-to-rail buffer amplifier for large flat-panel-display (FPD) applications is proposed. The major circuit of the output buffer is a rail-to-rail, folded-cascode, class-AB amplifier which can control the tail current source using a compact, novel, adaptive biasing scheme. The proposed output buffer amplifier enhances the slew rate throughout the entire rail-to-rail input signal range. To obtain a high slew rate and low power consumption without increasing the static current, the tail current source of the adaptive biasing generates extra current during the transition time of the output buffer amplifier. A column driver IC incorporating the proposed buffer amplifier was fabricated in a 1.6-µm 18-V CMOS technology, whose evaluation results indicated that the static current was reduced by up to 39.2% when providing an identical settling time. The proposed amplifier also achieved up to 49.1% (90% falling) and 19.9 % (99.9% falling) improvements in terms of settling time for almost the same static current drawn and active area occupied.
    [Show full text]
  • Low Power Schmitt Trigger
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol 3, No 2, 2012 Low Power Schmitt Trigger Swati Kundra *, Priyanka Soni Mody Institute of Technology & Science, Lakshmangarh-332311, India * E-mail of the corresponding author: [email protected] Abstract The Schmitt Trigger is a comparator circuit that incorporates positive feedback. Noise is being ignored by CMOS Schmitt Trigger as the hysteresis in a Schmitt Trigger circuit offers a better noise margin and noise stable operation. And the simulation has been done on Tanner EDA tool at TSMC 130nm technology with 1 V supply voltage. TSPICE simulation results of the circuit confirm the effectiveness of the approach. Proposed Schmitt Trigger is designed by using less transistor count and a capacitor which results in less average power consumption with decrease in area. Delay is also decreased by using only one PMOS as because delay is more concentrated to PMOS due to less mobility of PMOS compare to NMOS. Keywords: CMOS Schmitt Trigger, Delay, Low power consumption 1. Introduction Sometimes an input signal to a digital circuit doesn’t directly fit the description of a digital signal. For various reasons it may have slow rise and/or fall times, or may have acquired some noise that could be sensed by further circuitry. It may even be an analog signal whose frequency we want to measure. All of these conditions, and many others, require a specialized circuit that will “clean up” a signal and force it to true digital shape.
    [Show full text]