The Nucleotypic Effects of Cellular DNA Content in Cartilaginous and Ray-Finned Fishes

Total Page:16

File Type:pdf, Size:1020Kb

The Nucleotypic Effects of Cellular DNA Content in Cartilaginous and Ray-Finned Fishes 683 The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes David C. Hardie and Paul D.N. Hebert Abstract: Cytological and organismal characteristics associated with cellular DNA content underpin most adaptionist interpretations of genome size variation. Since fishes are the only group of vertebrate for which relationships between genome size and key cellular parameters are uncertain, the cytological correlates of genome size were examined in this group. The cell and nuclear areas of erythrocytes showed a highly significant positive correlation with each other and with genome size across 22 cartilaginous and 201 ray-finned fishes. Regressions remained significant at all taxonomic levels, as well as among different fish lineages. However, the results revealed that cartilaginous fishes possess higher cytogenomic ratios than ray-finned fishes, as do cold-water fishes relative to their warm-water counterparts. Increases in genome size owing to ploidy shifts were found to influence cell and nucleus size in an immediate and causative man- ner, an effect that persists in ancient polyploid lineages. These correlations with cytological parameters known to have important influences on organismal phenotypes support an adaptive interpretation for genome size variation in fishes. Key words: evolution, genome size, DNA content, cell size, erythrocyte size, fishes, nucleotypic effect. Résumé : Des caractéristiques cytologiques et de l’organisme entier, lesquelles sont associées avec le contenu en ADN, sous-tendent la plupart des interprétations adaptivistes de la variation quant à la taille des génomes. Puisque les pois- sons constituent le seul groupe de vertébrés chez lequel les relations entre la taille du génome et certains paramètres cellulaires clés sont incertains, les corrélations entre les caractéristiques cytologiques et la taille du génome ont été exa- minées chez ce groupe d’espèces. Il existait une corrélation positive très significative entre les volumes de la cellule et du noyau chez les érythrocytes ainsi qu’entre ceux-ci et la taille du génome chez 22 espèces de poissons cartilagineux et chez 201 espèces de poissons à nageoires rayonnées. Les régressions sont demeurées significatives à tous les niveaux taxonomiques ainsi que chez tous grands groupes de poissons. Les résultats ont cependant révélé que les pois- sons cartilagineux possédaient des ratios cytogénomiques plus élevés que les poissons à nageoires rayonnées, tout comme le font les poissons d’eau froide par rapport aux poissons d’eau chaude. Des accroissements de la taille des génomes dus à des changements de ploïdie influençaient directement et immédiatement la taille de la cellule et du noyau, un effet qui persiste chez les anciennes lignées évolutives polyploïdes. Ces corrélations avec des paramètres cy- tologiques connus pour exercer des influences importantes sur le phénotype de l’organisme viennent appuyer une inter- prétation adaptative de la variation de la taille du génome chez les poissons. Motsclés:évolution, taille du génome, contenu en ADN, taille de la cellule, taille des érythrocytes, poissons, effets nucléotypiques. [Traduit par la Rédaction] Hardie and Hebert 706 Introduction variable, they are also strongly associated with cell size (Cavalier-Smith 1978 and references therein). Since this Early observations that cellular DNA amounts varied in a early work, the cytological correlates of genome size have non-random fashion both within and among groups of or- been confirmed in many groups across a 200 000 fold range ganisms (Mirsky and Ris 1951; Vendrely 1955) were soon of genome size (Gregory 2001b and references therein), followed by the discovery that cell and nuclear sizes varied such that the relationships between C value and both nucleus in concert with DNA content in protists (Shuter et al. 1983), and cell size rank among the most fundamental rules of plants (Martin 1966), and animals (Olmo and Morescalchi eukaryote cell biology (Cavalier-Smith 1993). 1975). Although prokaryotic genome sizes are much less Other than shifts in ploidy level, differences in amounts of non-coding DNA account for most genome size diversity Received 3 December 2002. Accepted 15 April 2003. (Cavalier-Smith 1985b), and five main explanations have Published on the NRC Research Press Web site at been advanced to explain this fact. The earliest of these hy- http://genome.nrc.ca on 13 June 2003. potheses proposed that non-coding DNA consists of extinct Corresponding Editor: P.B. Moens. genes (Ohno 1972), or “junk DNA”, which accumulates in the genome until constrained by selection. This term was D.C. Hardie1,2 and P.D.N. Hebert. Department of Zoology, more recently extended to include any genetic elements that University of Guelph, Guelph, ON N1G 2W1, Canada. increase in the genome by chance and lack a coding or regu- 1Corresponding author (e-mail: [email protected]). latory function (Pagel and Johnstone 1992). Second, the 2Present address: Department of Biology, Dalhousie “selfish DNA” theory argues that self-replicating DNA seg- University, Halifax, NS B3H 4J1, Canada. ments like transposable elements persist and increase within Genome 46: 683–706 (2003) doi: 10.1139/G03-040 © 2003 NRC Canada 684 Genome Vol. 46, 2003 the genome solely for their own benefit, and account for negatively to cell metabolic rate (Smith 1925; Goniakowska much non-coding DNA (Doolittle and Sapienza 1980; Orgel 1970) and both mitotic (Van’t Hof and Sparrow 1963) and and Crick 1980). More recently, the “mutational equilib- meiotic (Bennett 1971) division rates. rium” model proposed that genome size varies in a lineage until the loss of DNA through frequent small deletions is equal to the rate of DNA increase owing to long insertions DNA content and cell size: organismal phenotypes (Petrov 2002). Under the “nucleoskeletal” theory, DNA con- Given the ubiquitous and apparently causative relationship tent is secondarily selected owing to selection on cell and between genome size and a diversity of cytological parame- nuclear size (Cavalier-Smith 1978). Lastly, Bennett (1971) ters, the adoption of an adaptive interpretation for observed proposed the “nucleotypic” theory that DNA content affects patterns of genome size variation requires only that these cellular parameters in a causative manner, and is therefore cellular characteristics extend in some way to the organismal subject to secondary selection via selection on cytological level, so that they (and by turn, DNA content) are subject to and organismal phenotypes. Since each of these theories selection. That cell volume is subject to selection is hardly identifies factors that might contribute to genome size diver- debatable owing to its many physiological and developmen- sity, a pluralistic approach may provide the best explanation tal implications (Gregory 2001a). Most obviously, cell size of genome size evolution. Chipman et al. (2001) provide a affects body size in organisms with a fixed or constrained clear statement of this prospect — “One of the problems in number of cells, resulting in strong selection on cell size via many attempts at explaining the evolution of genome size is its effect on body size (Gregory et al. 2000). In fact, some the search for a single evolutionary model that holds for all organisms are known to exploit the causative effects of ge- taxa. We believe the situation is more complicated. Changes nome size on cytological parameters, undergoing in genome size are probably the result of a complex interac- endopolyploidy “on demand” to increase cell size in certain tion of heritable factors…random factors…and adaptive fac- tissues such as defensive or secretory structures (Perdix- tors…”. Nonetheless, the view that DNA content exerts Gillot 1979; Beaton and Hebert 1997). The negative associa- causative “nucleotypic” effects on cellular and related tion between cell size and division rates clearly subjects the organismal characteristics explains commensurate changes former to strong selection, particularly during development in cell size after both increases and decreases in genome and reproduction, when mitotic and meiotic rates are para- size. As such, the nucleotypic theory best addresses ob- mount. This relationship is best established in the amphibi- served relationships between nucleus, cell, and genome sizes ans, where a large volume of literature outlines (Gregory 2001a). However, this theory requires that cell size developmental correlates of cell (and genome) size and genome size be associated in a causative manner and (Chipman et al. 2001 and references therein), including neg- that cell size itself be of adaptive significance. ative associations with developmental rate (Camper et al. 1993) and complexity (Roth et al. 1997). Negative develop- DNA content and cell size: cellular phenotypes mental and growth rate correlates of cell size have also been A positive relationship between cell and genome size has identified in both protozoan and eukaryotic unicells (Shuter been identified in every group of organisms where it has et al. 1983), in plants (Van’t Hof and Sparrow 1963), and in been examined (Cavalier-Smith 1985a)exceptinfishes. invertebrates (Bier and Müller 1969), as well as in some ver- Boveri’s classic experiments first demonstrated this in ur- tebrate groups (Cavalier-Smith 1985b). Cavalier-Smith first chins, where manipulations of chromosome number gener- implicated r-selection (organisms adapted for ephemeral en- ated changes in cell size (Mirsky and Ris 1951). Importantly,
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Issue Statement the Antarctic the Antarctic Continent and Surrounding Southern Ocean Support Unique Terrestrial Ecosystems and S
    Issue Statement The Antarctic The Antarctic continent and surrounding Southern Ocean support unique terrestrial ecosystems and some of the world's most biologically productive neritic and pelagic food webs. At the base of the pelagic food web are Antarctic krill (Euphausia superba), a planktonic crustacean, with an estimated productivity of several billion tons annually. Krill, either directly or indirectly, provide food for most whales, seals, fish, squid, and seabirds that breed in or migrate to the Southern Ocean each year. Small-scale krill fisheries were first established in the 1960s, with several more initiated in the 1980s. Catches since 2010 averaged around 200,000 tons annually, in response to worldwide demand for more protein coupled with advances in technology, prompting concerns about the sustainability of these fisheries, especially considering climate change. In the neritic system, toothfish (Dissostichus spp.) (a key prey species of seals and Orcas) and minke whales (Balaenoptera bonaerensis) are currently the subjects of exploitation. In 1986, the International Whaling Commission placed a moratorium on commercial minke whaling, although the mammals may be killed for research purposes. From 1986 until 2018, Japan continued to harvest minke whales under this exception, with annual catches >500 between 1997 and 2008. In late 2018, Japan announced its intention to withdraw from the International Whaling Commission and resume commercial whaling. Fisheries for the Antarctic toothfish (Dissostichus mawsoni) (also called Antarctic cod) and Patagonian toothfish (Dissostichus eleginoides) (also called Chilean Seabass) are regulated by the Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR). Both are currently harvested, but there are concerns that the illegal catch far outweighs that permitted by the CCAMLR and could jeopardize sustainability of both species.
    [Show full text]
  • First Record of Neoscopelus Macrolepidotus Johnson, 1863 (Actinopterygii: Myctophiformes: Neoscopelidae) from Irish Waters (Porcupine Bank, North-Eastern Atlantic)
    ACTA ICHTHYOLOGICA ET PISCATORIA (2017) 47 (1): 85–89 DOI: 10.3750/AIEP/02141 FIRST RECORD OF NEOSCOPELUS MACROLEPIDOTUS JOHNSON, 1863 (ACTINOPTERYGII: MYCTOPHIFORMES: NEOSCOPELIDAE) FROM IRISH WATERS (PORCUPINE BANK, NORTH-EASTERN ATLANTIC) Francesc ORDINES1*, Ronald FRICKE2, Florencio GONZÁLEZ3, and Francisco BALDÓ4 1 Instituto Español de Oceanografía – Centre Oceanogràfic de les Balears, Palma, Spain 2 Im Ramstal 76, 97922 Lauda-Königshofen, Germany 3 Instituto Español de Oceanografía – Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Spain 4 Instituto Español de Oceanografía – Centro Oceanográfico de Cádiz, Cádiz, Spain Ordines F., Fricke R., González F., Baldó F. 2017. First record of Neoscopelus macrolepidotus Johnson, 1863 (Actinopterygii: Myctophiformes: Neoscopelidae) from Irish waters (Porcupine Bank, north- eastern Atlantic). Acta Ichthyol. Piscat. 47 (1): 85–89. Abstract. The blackchin, Neoscopelus macrolepidotus Johnson, 1863 (known also as large-scaled lanternfish), originally discovered at Madeira, is a globally distributed benthopelagic fish species that inhabits depths between 300 and 1100 m in the tropical and subtropical regions. Despite the sampling site of the original description, the species seems to be very rare in the eastern Atlantic, particularly at northern latitudes. The worldwide distribution of the species seems to be restricted to latitudes lower than 45º either in the Southern and Northern Hemisphere. During the Porcupine 2016 bottom trawl survey a specimen of N. macrolepidotus was collected at a depth of 628 m and latitude 51ºN in the Porcupine Bank, situated in the north-eastern Atlantic, approximately 204 km off the west coast of Ireland. This is the first record of the species in the Porcupine Bank. It significantly extends the distribution range of N.
    [Show full text]
  • Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries
    JANUARY 2020 Wholesale Market Profiles for Alaska Groundfish and FisheriesCrab Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries JANUARY 2020 JANUARY Prepared by: McDowell Group Authors and Contributions: From NOAA-NMFS’ Alaska Fisheries Science Center: Ben Fissel (PI, project oversight, project design, and editor), Brian Garber-Yonts (editor). From McDowell Group, Inc.: Jim Calvin (project oversight and editor), Dan Lesh (lead author/ analyst), Garrett Evridge (author/analyst) , Joe Jacobson (author/analyst), Paul Strickler (author/analyst). From Pacific States Marine Fisheries Commission: Bob Ryznar (project oversight and sub-contractor management), Jean Lee (data compilation and analysis) This report was produced and funded by the NOAA-NMFS’ Alaska Fisheries Science Center. Funding was awarded through a competitive contract to the Pacific States Marine Fisheries Commission and McDowell Group, Inc. The analysis was conducted during the winter of 2018 and spring of 2019, based primarily on 2017 harvest and market data. A final review by staff from NOAA-NMFS’ Alaska Fisheries Science Center was completed in June 2019 and the document was finalized in March 2016. Data throughout the report was compiled in November 2018. Revisions to source data after this time may not be reflect in this report. Typically, revisions to economic fisheries data are not substantial and data presented here accurately reflects the trends in the analyzed markets. For data sourced from NMFS and AKFIN the reader should refer to the Economic Status Report of the Groundfish Fisheries Off Alaska, 2017 (https://www.fisheries.noaa.gov/resource/data/2017-economic-status-groundfish-fisheries-alaska) and Economic Status Report of the BSAI King and Tanner Crab Fisheries Off Alaska, 2018 (https://www.fisheries.noaa.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Annadel Cabanban Emily Capuli Rainer Froese Daniel Pauly
    Biodiversity of Southeast Asian Seas , Palomares and Pauly 15 AN ANNOTATED CHECKLIST OF PHILIPPINE FLATFISHES : ECOLOGICAL IMPLICATIONS 1 Annadel Cabanban IUCN Commission on Ecosystem Management, Southeast Asia Dumaguete, Philippines; Email: [email protected] Emily Capuli SeaLifeBase Project, Aquatic Biodiversity Informatics Office Khush Hall, IRRI, Los Baños, Laguna, Philippines; Email: [email protected] Rainer Froese IFM-GEOMAR, University of Kiel Duesternbrooker Weg 20, 24105 Kiel, Germany; Email: [email protected] Daniel Pauly The Sea Around Us Project , Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Email: [email protected] ABSTRACT An annotated list of the flatfishes of the Philippines was assembled, covering 108 species (vs. 74 in the entire North Atlantic), and thus highlighting this country's feature of being at the center of the world's marine biodiversity. More than 80 recent references relating to Philippine flatfish are assembled. Various biological inferences are drawn from the small sizes typical of Philippine (and tropical) flatfish, and pertinent to the "systems dynamics of flatfish". This was facilitated by FishBase, which documents all data presented here, and which was used to generate the graphs supporting these biological inferences. INTRODUCTION Taxonomy, in its widest sense, is at the root of every scientific discipline, which must first define the objects it studies. Then, the attributes of these objects can be used for various classificatory and/or interpretive schemes; for example, the table of elements in chemistry or evolutionary trees in biology. Fisheries science is no different; here the object of study is a fishery, the interaction between species and certain gears, deployed at certain times in certain places.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • An Annotated Checklist of Philippine Flatfish: Ecological Implications3'
    An Annotated Checklist of Philippine Flatfish: Ecological Implications3' A. Cabanbanb) E. Capulic) R. Froesec) and D. Pauly1" Abstract An annotated list of the flatfish of the Philippines was assembled, covering 108 species (vs. 74 in the entire North Atlantic), and thus highlighting this country's feature of being at the center of the world's marine biodiversity. More than 80 recent references relating to Philippine flatfish are assembled. Various biological inferences are drawn from the small sizes typical of Philippine (and tropical) flatfish, and pertinent to the "systems dynamics of flatfish". This was facilitated by the FishBase CD-ROM, which documents all data presented here, and which was used to generate the graphs supporting these biological inferences. a) For presentation at the Third International Symposium on Flatfish Ecology, 2-8 November 1996, Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands. ICLARM Contribution No. 1321. b> Borneo Marine Research Unit, Universiti Malaysia Sabah, 9th Floor Gaya Centre, Jalan Tun Fuad Stephens, Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia. c) International Center for Living Aquatic Resources Management (ICLARM), MCPO Box 2631, 0718 Makati City, Philippines. d) Fisheries Centre, University of British Columbia, 2204 Main Mall, Vancouver, B.C. Canada V6T 1Z4. E- mail: [email protected]. Introduction Taxonomy, in its widest sense, is at the root of every scientific discipline, which must first define the objects it studies. Then, the attributes of these objects can be used for various classificatory and/or interpretive schemes; for example, the table of elements in chemistry or evolutionary trees in biology. Fisheries science is no different; here the object of study is a fishery, the interaction between species and certain gears, deployed at certain times in certain places.
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]