Anatrace 2014 Catalog

Total Page:16

File Type:pdf, Size:1020Kb

Anatrace 2014 Catalog We set our standards high. So you can, too. C a t a l o g DetergentS | Lipids | CuStomS | HigHer StanDards Table of Contents t Ordering Information . 2 able of Terms and Conditions . 3-5 General Information Detergents .and .Their .Uses .In .Membrane .Protein .Science . 8-15 Detergent .Properties . 16-23 Detergent .Analysis . 24 Starter .Detergent .Library . 25 Detergents c General .Information—Detergents . 28 ontents Amine .Oxides . 29-30 CYMALs . 31-37 Glucosides . 38-45 HEGAs .and .Megas . 46-49 Maltosides . 50-63 NG .Class . 64-67 Thioglucosides .and .Thiomaltosides . 68-71 Lipids General .Information—Lipids . 74 Cholesterols . 75-77 Cyclofos™ . 78-79 Fos-Choline® . 80-90 Fos-Meas . 91 Lipids . 92-94 LysoFos® . 95-97 Industrial Detergents General .Information—Industrial .Detergents . 100 Anapoe® . .101-106 Anzergent® . .107-108 Ionic . .109-111 MB .Reagents . .112-118 NDSB . 119 Zwitterionic . .120-121 Specialty Detergents General .Information—Specialty .Detergents . 124 Alkyl .PEGs . .125-126 Amphipols . .127-130 BisMalts . .131-132 Complex . 133 Deuterated . .134-138 . Fluorinated . 139 . Lipidic .Cubic .Phase .(LCP) . 140 . Selenated . .141-143 . Spin .Label .Reagents . 144 . TriPod . 145 . Detergent Kits General .Information—Kits . .148 Solid .Kits . .149-150 . Solution .Kits . 151 Custom Products . .154-155 Indexes Product .Number . .158-159 Product .Name . .160-161 CAS .Registry . .162-164 www.anatrace.com 1 Ordering Information Placing Orders Package Weight Telephone: . Monday-Friday .8:00 .AM–5:00 .PM .(EST) . Unless .otherwise .specified, .the .package .will .contain .at .least .the . Toll .free .in .the .U .S . .1-800-252-1280 . indicated .amount .and .usually .slightly .more . .The .user .is .cautioned . Or .call .419-740-6600 to .always .measure .the .required .amount .from .the .container . Mail: . Anatrace .Products, .LLC . Quality . 434 .West .Dussel .Drive . It .is .our .goal .to .always .supply .the .finest .quality .products .avail- . Maumee, .OH .43537 able . .If .you .are .not .completely .satisfied .that .the .chemical .sup- plied .to .you .meets .the .specifications .described .herein, .we .will . Fax: . 419-740-6630 replace .it . Email: . customerservice@anatrace com. Return Policy Should .you .receive .a .product .ordered .from .this .catalog .which . nformation Web: . anatrace com. i is .believed .to .be .nonconforming, .please .return .the .material . No .minimum .is .required .when .ordering . .Net .30 . within .30 .days . .You .must .receive .authorization .before .returning . days . the .product . .Returned .products .that .have .been .ordered .in .error . Bulk .Orders: .Should . .you .need .more .than .the .largest .size .of- or .have .been .retained .more .than .30 .days .are .subject .to .a .25% . fered .in .the .catalog, .there .can .be .considerable . restocking .fee . savings .by .ordering .in .bulk . .When .ordering .please . Custom Synthesis request .special .pricing . Our .research .staff .will .be .pleased .to .work .with .you .on .the .synthe- Prices: . Although. .we .make .every .effort .to .keep .prices . sis .and .purification .of .a .novel .detergent .or .other .reagent .for .your . rdering constant, .the .prices .herein .may .change .without . individual .research .needs . notice . o Technical Support Credit .Cards: .We . .accept .VISA®, .MasterCard®, .and .American . For .detailed .information .and/or .technical .assistance .call .our . Express . toll .free .number .during .normal .business .hours: .1-800-252-1280 . Inquiries .can .also .be .sent .by .fax: .419-740-6630 .or .e-mail: . Shipping customerservice@anatrace com. Domestic .Orders—Shipping .and .Handling—$35 .00 . .Most .orders . will .be .shipped .by .overnight .service . International .Orders—Shipping .and .Handling—$65 .00 . All .orders .will .be .shipped .by .priority .air . .Our .international .custom- Definitions ers .are .responsible .for .all .duties .and .taxes .at .their .location . All .concentrations .listed .as .percent .are .weight/volume .unless . specifically .stated . Please Note: Anatrace® .detergents .have .been .shown .to .be .stable . under .normal .shipping .conditions .and .will .NOT .be .shipped .with . AGGREGATION NUMBER is .the .molecular .weight .of .the .micelle . either .an .ice .pack .or .dry .ice . divided .by .the .molecular .weight .of .the .detergent . Product Use BSA .is .bovine .serum .albumin . Products .of .seller .which .are .or .may .be .drugs, .food .additives .or . CMC .is .the .critical .micelle .concentration . diagnositic .reagents, .as .defined .in .the .federal .food, .drug, .and . cosmetic .act .are .for .investigational .use .only .in .laboratory .re- [ ] is .the .Chemical .Abstracts .Registry .Number .(CAS) . search .animals .or .testing .in vitro, .and .are .not .for .drug, .new .drug, . veterinary .drug, .food, .food .additive .or .human .use . .Unless .other- FW .is .the .formula .weight . wise .indicated, .all .products .are .distributed .and .sold .for .chemical . purposes .only, .not .for .drug .use .or .application .to .or .ingestion .by . PERCENT ALPHA .is .the .percent .alpha .isomer .measured .by .an . humans .or .for .commercial .horticulture .use, .for .pesticide .use, . HPLC .method .developed .at .Anatrace . for .application .to .or .ingestion .by .animals .or .for .veterinary .drug . µS .is .micro .Siemens . use . .All .products .sold .by .seller .to .buyer .shall .be .used .by .qualified . professionals .only . .The .burden .for .safe .use .and .handling .of .all . FW avg. .is .the .approximate, .estimated .FW .for .commercial .deter- products .sold .by .seller .to .buyer .is .entirely .the .responsibility .of . gents . buyer .and .anyone .who .purchases .the .goods .from .buyer .and . uses .them . .Absence .of .hazardous .warnings .does .not .imply .non- toxicity . .Any .resale, .distribution .and/or .export .of .products .sold . by .seller .to .buyer .outside .the .USA .must .be .strictly .in .accordance . with .US .law .and .United .Nations .regulations . 2 800.252.1280 Terms and Conditions t 1 . .General . .These .Terms .and .Conditions .of .Sale .(“Terms .and . 6 . .Limited .Warranty . .For .Products reasonably .determined .by . erms and Conditions”) .shall .govern .the .sale .and .license .to .the .purchaser . Anatrace .to be. defective,. independent. .of .user error,. .shall .be re. - (“Buyer”) .of .products .sold .by .Anatrace .Products, .LLC .(“Anatrace”) . placed .by Anatrace. on. a. 1:1,. like-kind. basis. at. no. .cost to. Buyer. pro. - and .named .on .the .invoice .provided .to .Buyer .in .connection .there- vided that. such. defective. .Products .were .used by. Buyer. prior. to. their. with . .These .Terms .and .Conditions .shall .replace .and .supersede . expiration date,. or. if. there. is. .no expiration. .date, the. Products. were. any .current .or .future .purchase .orders .or .similar .forms .that .are .not . used within. .six (6). .months of. receipt,. and. the. defect. was. promptly. mutually .signed .by .Anatrace .and .Buyer . .Purchase .orders, .once . reported with. appropriate. detail. to. Anatrace’. technical. .support . accepted .by .Anatrace, .are .not .subject .to .cancellation .or .modifica- Anatrace .may, .in .its .own .discretion, .furnish .technical .assistance . tion .by .Buyer .without .Anatrace’ .written .consent . and .information .with .respect .to .the .Products . .Anatrace .is .under . no .obligation .to .provide .technical .assistance .or .information . about .Anatrace .products . .Any .suggestions .by .Anatrace .regarding . c 2 . .Price . .For Deliveries Outside the United States: Prices . use, .selection, .application .or .suitability .of .the .Products .shall .not . exclude .all .insurance, .freight, .taxes, .fees, .duties .and .levies, .which . onditions be .construed .as .a .warranty . shall .be .payable .by .Buyer . Except .as .provided .above, .any .warranty .provided .herein .does .not . apply .to .other .consumables, .or .to .any .defect .caused .by .failure .to . 3 . .Delivery . .Products .will .be .packed .in .Anatrace’ .standard .ship- provide .a .suitable .storage, .use, .or .operating .environment, .use .of . ping .packages . .Anatrace .may .make .partial .deliveries . .Anatrace . non-recommended .reagents, .spills, .or .the .use .of .the .Products .for . will .ship .via .carrier .selected .by .Anatrace . .Delivery .dates .set .forth . a .purpose .or .in .a .manner .other .than .that .for .which .they .were .de- on .a .purchase .order .accepted .by .Anatrace .are .subject .to .change . signed, .modifications .done .by .Buyer, .or .any .other .abuse, .misuse, . and .are .predicated .on .conditions .existing .at .that .time . .Anatrace . or .neglect .of .the .Products . .This .warranty .applies .only .to .Buyer, .and . does .not .guarantee .any .delivery .dates .and .shall .not .be .respon- not .third .parties . .The .foregoing .is .not .intended .to .limit .any .war- sible .for .any .loss .or .damage .of .any .kind .or .nature .whatsoever . ranty .extended .to .Buyer .by .a .third .party .original .Product .manufac- caused .by .any .delay .in .delivery .irrespective .of .the .cause .of .such . turer .of .a .Product .or .component .thereof, .provided .that .any .remedy . delay . received .by .Buyer .under .any .such .warranty .shall .relieve .Anatrace . For Deliveries Outside the United States: Products .will .be . of .its .obligations .with .respect .to .the .subject .of .such .remedy . .TO . delivered .to .the .Buyer’s .site .and .the .Buyer .will .be .the .importer .for . THE .EXTENT .PERMITTED
Recommended publications
  • Download Product Insert (PDF)
    PRODUCT INFORMATION 1-Palmitoyl-2-oleoyl-sn-glycero-3-PC Item No. 15102 CAS Registry No.: 26853-31-6 Formal Name: 1-palmitoyl-2-oleoyl-sn-glycero-3- O phosphatidylcholine Synonyms: 1-Palmitoyl-2-oleoyl-sn-glycero-3- O O Phosphocholine, 1,2-POPC O MF: C42H82NO8P FW: 760.1 O N+ Purity: ≥98% O P O Supplied as: A crystalline solid O- Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures 1-Palmitoyl-2-oleoyl-sn-glycero-3-PC (1,2-POPC) is supplied as a crystalline solid. A stock solution may be made by dissolving the 1,2-POPC in the solvent of choice, which should be purged with an inert gas. 1,2-POPC is soluble in the organic solvent ethanol at a concentration of approximately 25 mg/ml. Description 1,2-POPC is a phospholipid containing 16:0 and 18:1 fatty acids at the sn-1 and sn-2 positions, respectively. It belongs to a class of phospholipids that are a major component of biological membranes.1,2 This compound can be used for liposome production in order to study the properties of lipid bilayers. References 1. Moreno, M.J., Estronca, L.M.B.B., and Vaz, W.L.C. Translocation of phospholipids and dithionite permeability in liquid-ordered and liquid-disordered membranes. Biophys. J. 91, 873-881 (2006). 2. Heberle, F.A. and Feigenson, G.W. Phase separation in lipid membranes. Cold Spring Harb. Perspect. Biol. 3(4), 1-13 (2011).
    [Show full text]
  • (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles
    5112 Biophysical Journal Volume 96 June 2009 5112–5121 Profilin Interaction with Phosphatidylinositol (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles Kannan Krishnan,† Oliver Holub,‡ Enrico Gratton,‡ Andrew H. A. Clayton,§ Stephen Cody,§ and Pierre D. J. Moens†* †Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia; ‡Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California; and §Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia ABSTRACT Profilin, a small cytoskeletal protein, and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] have been implicated in cellular events that alter the cell morphology, such as endocytosis, cell motility, and formation of the cleavage furrow during cytokinesis. Profilin has been shown to interact with PI(4,5)P2, but the role of this interaction is still poorly understood. Using giant unilamellar vesicles (GUVs) as a simple model of the cell membrane, we investigated the interaction between profilin and PI(4,5)P2. A number and brightness analysis demonstrated that in the absence of profilin, molar ratios of PI(4,5)P2 above 4% result in lipid demixing and cluster formations. Furthermore, adding profilin to GUVs made with 1% PI(4,5)P2 leads to the forma- tion of clusters of both profilin and PI(4,5)P2. However, due to the self-quenching of the dipyrrometheneboron difluoride-labeled PI(4,5)P2, we were unable to determine the size of these clusters. Finally, we show that the formation of these clusters results in the destabilization and deformation of the GUV membrane.
    [Show full text]
  • 2011-2012 Catalog
    2011-2012 Catalog Anatrace® products. The difference is crystal clear. Table of Contents Ordering Information . 2 Table of Contents Terms & Conditions . 3-5 Introductory Information Detergents and Their Uses . 8-15 Detergent Properties . 16-23 Detergent Analysis . 24 Books . 25 Broad Application Detergents Product Information . 26-31 Non-ionic . 32-64 Ionic . 65-66 Zwitterionic . 67-71 Specialty Detergents for Extraction Product Information . 72-74 Anapoe® detergents . 75-79 Specialty Detergents for Refolding Product Information . 80-84 Refolding . 85 Specialty Detergents for Solubility and Stabilization Product Information . 86-91 Lysolipids . 92-96 Lipids . 97-98 Lipid-like . 99-112 Cholesterols . 113 Additive Chemistries for Structural Biology Product Information . 114-116 Maltoside Derivatives . 116-117 Fos-Choline Derivatives . 116-117 Specialty Detergents for Crystallography Product Information . 118-121 NG Class Detergents . 122 Crystallization Aids . 123 Heavy Atom Detergents Product Information . 124-126 Deuterated Detergents . 126-130 Selenium Detergents . 131-133 Selenomethionine . 132 Molecular Biology Detergents . 134-141 Detergent Kits Solid Kits . 142-145 Solution Kits . 146-147 Indexes Product Number Index . 148-151 Product Name Index . 152-153 CAS Registry Index . 154-156 www.anatrace.affymetrix.com 1 Ordering Information Placing Orders veterinary drug use. All products sold by seller to buyer shall be used Telephone: Monday-Friday 8:30 AM – 5:30 PM (EST) by qualified professionals only. The burden for safe use and handling Toll free in the U.S. 1-888-362-2447 of all products sold by seller to buyer is entirely the responsibility of Or call 419-740-6600 buyer and anyone who purchases the goods from buyer and uses them.
    [Show full text]
  • Cholesterol in Condensed and Fluid Phosphatidylcholine Monolayers Studied by Epifluorescence Microscopy
    Biophysical Journal Volume 72 June 1997 2569-2580 2569 Cholesterol in Condensed and Fluid Phosphatidylcholine Monolayers Studied by Epifluorescence Microscopy Lynn-Ann D. Worthman,* Kaushik Nag,* Philip J. Davis,* and Kevin M. W. Keough*# *Department of Biochemistry and #Discipline of Pediatrics, Memorial University of Newfoundland, St. John's, Newfoundland Al B 3X9, Canada ABSTRACT Epifluorescence microscopy was used to investigate the effect of cholesterol on monolayers of dipalmi- toylphosphatidylcholine (DPPC) and 1 -palmitoyl-2-oleoyl phosphatidylcholine (POPC) at 21 ± 20C using 1 mol% 1 -palmitoyl- 2-{1 2-[(7-nitro-2-1, 3-benzoxadizole-4-yl)amino]dodecanoyl}phosphatidylcholine (NBD-PC) as a fluorophore. Up to 30 mol% cholesterol in DPPC monolayers decreased the amounts of probe-excluded liquid-condensed (LC) phase at all surface pressures (ir), but did not effect the monolayers of POPC, which remained in the liquid-expanded (LE) phase at all 7r. At low (2-5 mN/m), 10 mol% or more cholesterol in DPPC induced a lateral phase separation into dark probe-excluded and light probe-rich regions. In POPC monolayers, phase separation was observed at low IT when .40 mol% or more cholesterol was present. The lateral phase separation observed with increased cholesterol concentrations in these lipid monolayers may be a result of the segregation of cholesterol-rich domains in ordered fluid phases that preferentially exclude the fluorescent probe. With increasing 7r, monolayers could be transformed from a heterogeneous dark and light appearance into a homogeneous fluorescent phase, in a manner that was dependent on ir and cholesterol content. The packing density of the acyl chains may be a determinant in the interaction of cholesterol with phosphatidylcholine (PC), because the transformations in monolayer surface texture were observed in phospholipid (PL)/sterol mixtures having similar molecular areas.
    [Show full text]
  • A Case Report of Accidental Intoxication Following Ingestion of Foxglove Confused with Borage: High Digoxinemia Without Major Complications
    Hindawi Case Reports in Cardiology Volume 2019, Article ID 9707428, 6 pages https://doi.org/10.1155/2019/9707428 Case Report A Case Report of Accidental Intoxication following Ingestion of Foxglove Confused with Borage: High Digoxinemia without Major Complications Maria Silvia Negroni,1 Arianna Marengo,2 Donatella Caruso,3 Alessandro Tayar,1 Patrizia Rubiolo,2 Flavio Giavarini,3 Simone Persampieri,1 Enrico Sangiovanni,3 Franca Davanzo,4 Stefano Carugo,1 Maria Laura Colombo,2 and Mario Dell’Agli 3 1Division of Cardiology, San Paolo Hospital, Department of Health Sciences, University of Milan, Via A. Di Rudini 8, Milan, Italy 2Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, Turin, Italy 3Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, Milan, Italy 4Poison Control Centre of Milan, Niguarda Ca’ Granda Hospital, Milan, Italy Correspondence should be addressed to Mario Dell’Agli; [email protected] Received 12 June 2019; Accepted 13 November 2019; Published 29 November 2019 Academic Editor: Kuan-Rau Chiou Copyright © 2019 Maria Silvia Negroni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Foxglove (Digitalis purpurea L.) leaves are frequently confused with borage (Borago officinalis L.), which is traditionally used as a food ingredient. Due to the presence of the cardiac glycosides, mostly digitoxin, foxglove leaves are poisonous to human and may be fatal if ingested. A 55-year-old Caucasian woman complaining weakness, fatigue, nausea, and vomiting was admitted to the Emergency Department.
    [Show full text]
  • Chiral Supramolecular Architecture of Stable Transmembrane Pores
    www.nature.com/scientificreports OPEN Chiral supramolecular architecture of stable transmembrane pores formed by an α-helical antibiotic peptide in the presence of lyso- lipids Erik Strandberg1, David Bentz2, Parvesh Wadhwani1 & Anne S. Ulrich1,2* The amphipathic α-helical antimicrobial peptide MSI-103 (aka KIA21) can form stable transmembrane pores when the bilayer takes on a positive spontaneous curvature, e.g. by the addition of lyso-lipids. Solid-state 31P- and 15N-NMR demonstrated an enrichment of lyso-lipids in these toroidal wormholes. Anionic lyso-lipids provided additional stabilization by electrostatic interactions with the cationic peptides. The remaining lipid matrix did not afect the nature of the pore, as peptides maintained the same orientation independent of lipid charge, and a change in membrane thickness did not considerably afect their tilt angle. Under optimized conditions (i.e. in the presence of lyso-lipids and appropriate bilayer thickness), stable and well-aligned pores could be obtained for solid-state 2H-NMR analysis. These data revealed for the frst time the complete 3D alignment of this representative amphiphilic peptide in fuid membranes, which is compatible with either monomeric helices as constituents, or left- handed supercoiled dimers as building blocks from which the overall toroidal wormhole is assembled. Membrane-active antimicrobial peptides (AMPs) can kill microorganisms by permeabilizing the cell mem- brane. They are attracting much attention as potential new antibiotics against the increasingly common multidrug-resistant bacterial strains1–4. While it is clear that these peptides can target a wide range of microorgan- isms, the molecular mechanisms of membrane permeabilization are not yet fully characterized.
    [Show full text]
  • Effects of Antidepressants on the Conformation of Phospholipid Headgroups Studied by Solid-State NMR
    MAGNETIC RESONANCE IN CHEMISTRY Magn. Reson. Chem. 2004; 42: 105–114 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mrc.1327 Effects of antidepressants on the conformation of phospholipid headgroups studied by solid-state NMR Jose S. Santos,1† Dong-Kuk Lee1,2 and Ayyalusamy Ramamoorthy1,2,3∗ 1 Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109-1055, USA 2 Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA 3 Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1055, USA Received 10 June 2003; Revised 25 August 2003; Accepted 1 September 2003 The effect of tricyclic antidepressants (TCA) on phospholipid bilayer structure and dynamics was studied to provide insight into the mechanism of TCA-induced intracellular accumulation of lipids (known as lipidosis). Specifically we asked if the lipid–TCA interaction was TCA or lipid specific and if such physical interactions could contribute to lipidosis. These interactions were probed in multilamellar vesicles and mechanically oriented bilayers of mixed phosphatidylcholine–phosphatidylglycerol (PC–PG) phospholipids using 31Pand14N solid-state NMR techniques. Changes in bilayer architecture in the presence of TCAs were observed to be dependent on the TCA’s effective charge and steric constraints. The results further show that desipramine and imipramine evoke distinguishable changes on the membrane surface, particularly on the headgroup order, conformation and dynamics of phospholipids. Desipramine increases the disorder of the choline site at the phosphatidylcholine headgroup while leaving the conformation and dynamics of the phosphate region largely unchanged. Incorporation of imipramine changes both lipid headgroup conformation and dynamics.
    [Show full text]
  • Natural and Synthetic Saponins As Vaccine Adjuvants
    Review Natural and Synthetic Saponins as Vaccine Adjuvants Pengfei Wang Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] Abstract: Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in com- bating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combi- nations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies. Keywords: adjuvant; saponin; mechanism; SAR; QS-21; VSA-1; VSA-2 1. Introduction Traditional vaccines are whole-organism-based, using live attenuated or inactivated Citation: Wang, P. Natural and viruses or bacteria. These vaccines are quite reactogenic due to the presence of numerous Synthetic Saponins as Vaccine pathogen-associated-molecular-patterns (PAMPs) that are responsible for activation, and Adjuvants.
    [Show full text]
  • Diethylstilbestrol Modifies the Structure of Model Membranes And
    biomolecules Article DiethylstilbestrolArticle Modifies the Structure of Model Membranes Diethylstilbestrol Modifies the Structure of Model Membranes andand Is Is Localized Localized Close Close to the First Carbons of the Fatty Acyl Chains AlessioAlessio Ausili, Inés Inés Rodríguez-González, Rodríguez-González, Alejandro Torrecillas, JosJoséé A.A. TeruelTeruel andand JuanJuan C.C. GGómez-Fernándezómez-Fernández ** Departamento de Bioquímica y Biología Molecular “A”, Facultad de Veterinaria, Regional Campus of Departamento de Bioquímica y Biología Molecular “A”, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Apartado de Correos 4021, International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain; [email protected] (A.A.); [email protected] (I.R.-G.); [email protected] (A.T.); E-30080 Murcia, Spain; [email protected] (A.A.); [email protected] (I.R.-G.); [email protected] (A.T.); [email protected] (J.A.T.) [email protected] (J.A.T.) ** Correspondence: [email protected]; Tel.: +34 +34-868-884-766;-868-884-766; Fax: +34968364147 +34-968-364-147 Abstract:Abstract: TheThe synthetic synthetic estrogen estrogen diethylstilbestrol diethylstilbestrol (DES) (DES) is is used used to to treat treat metastatic metastatic carcinomas carcinomas and and prostateprostate cancer. cancer. We We studied studied its its interaction interaction with with membranes membranes and and its its localization to to understand its its mechanismmechanism of of action action and and side-effects. side-effects. We We used used differential differential scanning scanning calorimetry calorimetry (DSC) (DSC) showing showing that DESthat fluidized DES fluidized the membrane the membrane and has and poor has solubility poor solubility in DMPC in DMPC (1,2-dimyristoyl- (1,2-dimyristoyl-sn-glycero-3-phos-sn-glycero-3- phocholine)phosphocholine) in the influid the state.
    [Show full text]
  • Phospholipid-Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes
    bioRxiv preprint doi: https://doi.org/10.1101/425686; this version posted September 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phospholipid-Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes Andrey A. Gurtovenko,∗,† Evgenii I. Mukhamadiarov,‡ Andrei Yu. Kostritskii,‡ and Mikko Karttunen¶,§,† †Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St.Petersburg, 199004 Russia ‡Faculty of Physics, St.Petersburg State University, Ulyanovskaya str. 3, Petrodvorets, St.Petersburg, 198504 Russia ¶Department of Chemistry, the University of Western Ontario,1151 Richmond Street, London, Ontario, Canada N6A 3K7 §Department of Applied Mathematics, the University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7 E-mail: [email protected];Web:biosimu.org 1 bioRxiv preprint doi: https://doi.org/10.1101/425686; this version posted September 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Cellulose is an important biocompatible and nontoxic polymer widely used in nu- merous biomedical applications. The impact of cellulose-based materials on cells and, more specifically, on plasma membranes that surround cells, however, remains poorly understood. To this end, here we performed atomic-scale molecular dynamics (MD) simulations of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) bilayers interacting with the surface of a cellulose crystal.
    [Show full text]
  • 82181572.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1848 (2015) 1963–1973 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Impact of two different saponins on the organization of model lipid membranes Beata Korchowiec a,⁎,MarcelinaGorczycab, Kamila Wojszko a,c, Maria Janikowska b,d, Max Henry c, Ewa Rogalska c,⁎ a Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland b Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland c Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France d Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, ul. S. Lojasiewicza 11, 30-348 Krakow, Poland article info abstract Article history: Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This Received 23 February 2015 activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous so- Received in revised form 2 June 2015 lution and interact with membrane components. In this work, Langmuir monolayer techniques combined with Accepted 4 June 2015 polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy Available online 6 June 2015 were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, Keywords: Digitonin cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1- Saponin–membrane interactions glycerol) were formed at the air/water and air/saponin solution interfaces.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis Chemical Activity Count (+)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (+)-8HYDROXYCALAMENENE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 3 (+)-AROMOLINE 1 (+)-CASSYTHICINE 1 (+)-CATECHIN 10 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CEPHARANTHINE 1 (+)-CYANIDANOL-3 1 (+)-EPIPINORESINOL 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 2 (+)-GALLOCATECHIN 3 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 2 (+)-T-CADINOL 1 (+)-VESTITONE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (-)-ACANTHOCARPAN 1 (-)-ALPHA-BISABOLOL 2 (-)-ALPHA-HYDRASTINE 1 Chemical Activity Count (-)-APIOCARPIN 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANESCACARPIN 1 (-)-CENTROLOBINE 1 (-)-CLANDESTACARPIN 1 (-)-CRISTACARPIN 1 (-)-DEMETHYLMEDICARPIN 1 (-)-DICENTRINE 1 (-)-DOLICHIN-A 1 (-)-DOLICHIN-B 1 (-)-EPIAFZELECHIN 2 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 2 (-)-EPICATECHIN-GALLATE 1 (-)-EPIGALLOCATECHIN 4 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 9 (-)-EUDESMIN 1 (-)-GLYCEOCARPIN 1 (-)-GLYCEOFURAN 1 (-)-GLYCEOLLIN-I 1 (-)-GLYCEOLLIN-II 1 2 Chemical Activity Count (-)-GLYCEOLLIN-III 1 (-)-GLYCEOLLIN-IV 1 (-)-GLYCINOL 1 (-)-HYDROXYJASMONIC-ACID 1 (-)-ISOSATIVAN 1 (-)-JASMONIC-ACID 1 (-)-KAUR-16-EN-19-OIC-ACID 1 (-)-MEDICARPIN 1 (-)-VESTITOL 1 (-)-VESTITONE 1
    [Show full text]