Diethylstilbestrol Modifies the Structure of Model Membranes And

Total Page:16

File Type:pdf, Size:1020Kb

Diethylstilbestrol Modifies the Structure of Model Membranes And biomolecules Article DiethylstilbestrolArticle Modifies the Structure of Model Membranes Diethylstilbestrol Modifies the Structure of Model Membranes andand Is Is Localized Localized Close Close to the First Carbons of the Fatty Acyl Chains AlessioAlessio Ausili, Inés Inés Rodríguez-González, Rodríguez-González, Alejandro Torrecillas, JosJoséé A.A. TeruelTeruel andand JuanJuan C.C. GGómez-Fernándezómez-Fernández ** Departamento de Bioquímica y Biología Molecular “A”, Facultad de Veterinaria, Regional Campus of Departamento de Bioquímica y Biología Molecular “A”, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Apartado de Correos 4021, International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain; [email protected] (A.A.); [email protected] (I.R.-G.); [email protected] (A.T.); E-30080 Murcia, Spain; [email protected] (A.A.); [email protected] (I.R.-G.); [email protected] (A.T.); [email protected] (J.A.T.) [email protected] (J.A.T.) ** Correspondence: [email protected]; Tel.: +34 +34-868-884-766;-868-884-766; Fax: +34968364147 +34-968-364-147 Abstract:Abstract: TheThe synthetic synthetic estrogen estrogen diethylstilbestrol diethylstilbestrol (DES) (DES) is is used used to to treat treat metastatic metastatic carcinomas carcinomas and and prostateprostate cancer. cancer. We We studied studied its its interaction interaction with with membranes membranes and and its its localization to to understand its its mechanismmechanism of of action action and and side-effects. side-effects. We We used used differential differential scanning scanning calorimetry calorimetry (DSC) (DSC) showing showing that DESthat fluidized DES fluidized the membrane the membrane and has and poor has solubility poor solubility in DMPC in DMPC (1,2-dimyristoyl- (1,2-dimyristoyl-sn-glycero-3-phos-sn-glycero-3- phocholine)phosphocholine) in the influid the state. fluid Using state. small-angle Using small-angle X-ray diffraction X-ray diffraction (SAXD), (SAXD),it was observed it was observedthat DES increasedthat DES increasedthe thickness the of thickness the water of layer the water between layer phospholipid between phospholipid membranes, membranes, indicating indicatingeffects on theeffects membrane on the membranesurface. DS surface.C, X-ray DSC,diffraction, X-ray and diffraction, 31P-NMR and spectroscopy31P-NMR spectroscopywere used to werestudy used the effect of DES on the Lα-to-HII phase transition, and it was observed that negative curvature of the to study the effect of DES on the Lα-to-HII phase transition, and it was observed that negative Citation: Ausili, A.; membranecurvature ofis thepromoted membrane by DES, is promoted and this byeffect DES, may and be this significant effect may to understand be significant its to action understand on mem- its Rodríguez-González, I.; Citation: Ausili, A.; braneaction enzymes. on membrane Using enzymes.the 1H-NOESY-NMR-MAS Using the 1H-NOESY-NMR-MAS technique, cross-relaxation technique, rates cross-relaxation for different ratespro- Torrecillas, A.; Teruel, J.A.; Rodríguez-González, I.; tonsfor different of DES protonswith POPC of DES (1-palmitoyl-2-oleoyl- with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)sn-glycero-3-phosphocholine) protons were protons calcu- Gómez-Fernández,Torrecillas, A.; Teruel, J.C. J.A.; lated,were calculated,suggesting suggestingthat the most that likely the location most likely of DE locationS in the of membrane DES in the is membrane with the main is with axis the parallel main DiethylstilbestrolGómez-Fernández, Modified J.C. the toaxis the parallel surface to and the close surface to andthe first close carbons to the first of th carbonse fatty ofacyl the chains fatty acylof POPC. chains Molecular of POPC. Moleculardynamics StructureDiethylstilbestrol of Model Modifies Membranes the and simulationsdynamics simulations were in close were agreements in close agreements with the ex withperimental the experimental results regard resultsing regarding the location the locationof DES isStructure Localized of Close Model to Membranes the First and Is in phospholipids bilayers. CarbonsLocalized of Closethe Fatty to the Acyl First Chains. Carbons of DES in phospholipids bilayers. Biomoleculesof the Fatty Acyl2021, Chains.11, x. Biomolecules 3131 11 https://doi.org/10.3390/xxxxx2021, 11, 220. https://doi.org/ Keywords:Keywords: diethylstilbestrol; membranes;membranes; P-NMR;P-NMR; H-NOESY-MAS-NMR;H-NOESY-MAS-NMR; DSC; DSC; wide-angle wide-angle X-ray X- 10.3390/biom11020220 raydiffraction diffraction (WAXD); (WAXD); SAXD SAXD Academic Editor: Jan Malínský Academic Editor: Jan Malínský Received:Received: 25 25 December December 2020 2020 Accepted:Accepted: 1 1 February February 2021 2021 1.1. Introduction Introduction Published: 4 February 2021 Published: 4 February 2021 DiethylstilbestrolDiethylstilbestrol (DES) (DES) is is a a synthetic synthetic form form of of estrogen, estrogen, a a female female hormone. hormone. Its Its name, name, established by the International Union for Pure and Applied Chemistry IUPAC, is 4-[(E)-4- Publisher’s Note: MDPI stays neu- established by the International Union for Pure and Applied Chemistry IUPAC, is 4-[(E)- Publisher’s Note: MDPI stays neutral 4-(4-hydroxyphenyl)hex-3-en-3-yl]phenol(4-hydroxyphenyl)hex-3-en-3-yl]phenol (Figure (Figure1). 1). tralwith with regard regard to to jurisdictional jurisdictionalclaims claimsin published in published maps maps and and institutional insti- tutionalaffiliations. affiliations. Copyright: © 2021 by the authors. LicenseeCopyright: MDPI,© 2021Basel, bySwitzerland. the authors. ThisLicensee article MDPI, is an open Basel, access Switzerland. article distributedThis article under is an the open terms access and articlecon- ditionsdistributed of the underCreative the Commons terms At- and conditions of the Creative Commons tribution (CC BY) license (http://cre- Attribution (CC BY) license (https:// ativecommons.org/licenses/by/4.0/). FigureFigure 1. 1. StructureStructure of of diethylstilbestrol diethylstilbestrol (DES). (DES). Protons Protons studied by 1H-NMRH-NMR are are labeled. labeled. creativecommons.org/licenses/by/ 4.0/). Biomolecules 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, 220. https://doi.org/10.3390/biom11020220 https://www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, 220 2 of 17 DES consists of a drug with antiestrogenic and antiandrogenic effects, used to treat metastatic carcinomas and prostate cancer. It was widely used during some decades (1940–1970) to prevent spontaneous abortions, but it was later found that DES causes very important toxicological effects to the children exposed in the uterus to this substance, such as an increase in the risk of cancer and abnormalities in the uterus of daughters, and these effects may be seen even in the third generation [1]. Currently, this synthetic estrogen is used in rare cases, due to the existence of other drugs which cause fewer secondary effects, since DES is related to the appearance of carcinomas of the vagina and uterus in those women whose mothers received DES during their pregnancy [2,3]. DES is also an endocrine disruptor with obesogenic effects [4]. DES is an amphipathic molecule with membrane affinity, and it has been shown that it may interact with membrane enzymes such as H+-ATPases of the P-, V-, and F- types [5]. For example, it inhibits the H+-ATPase of rat liver mitochondria, interfering with the proton translocation activity of the Fo subunits [6,7]. It was also observed that DES may inhibit the Ca2+-ATPase transport system of the sarcoplasmic reticulum after insertion into the membrane, affecting the Ca2+-binding sites [8]. These inhibitory effects of DES indicate that some of its biological effects may be associated with its insertion into the membrane. Most interesting is the fact that the effects of DES may be mediated by membrane estrogen receptors. It has been shown that mice genetically engineered to lack membrane estrogen receptors do not suffer pathologies associated with exposure to DES [9]. Keeping in mind the clear association of the biological effects of DES with its insertion into membranes, it is interesting to study its interaction with model membranes and its membrane location. Given its molecular structure, it should be considered whether this molecule may alter the properties of the membranes, since it is possible that this modification might be one of the causes of its biological effects. The diverse biological activities of DES have not yet been explained from a molecular point of view. One may expect that its mechanism of action could be its interaction with hormone (estrogen) receptors since it is a synthetic structural analogue of these hormones. However, although it is true that DES could interact with the receptors of these hormones, it may interact also with membranes and may alter the activity of membrane enzymes such as H+-ATPases of the P-, V-, and F- types [5]. It is then interesting to characterize the way in which DES modulates the membrane to fully understand its molecular mechanism of action. Therefore, in this work, we studied the interaction of DES with model membranes of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) to study its modulation of the mem- brane gel-to-fluid transition and membrane dimensions, of DEPE (1,2-dielaidoyl-sn-glycero- 3-phosphoethanolamine) to study its influence on membrane curvature, and of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)
Recommended publications
  • Affect Breast Cancer Risk
    HOW HORMONES AFFECT BREAST CANCER RISK Hormones are chemicals made by the body that control how cells and organs work. Estrogen is a female hormone made mainly in the ovaries. It’s important for sexual development and other body functions. From your first monthly period until menopause, estrogen stimulates normal breast cells. A higher lifetime exposure to estrogen may increase breast cancer risk. For example, your risk increases if you start your period at a young age or go through menopause at a later age. Other hormone-related risks are described below. Menopausal hormone therapy Pills Menopausal hormone therapy (MHT) is The U.S. Food and Drug Administration also known as postmenopausal hormone (FDA) recommends women use the lowest therapy and hormone replacement dose that eases symptoms for the shortest therapy. Many women use MHT pills to time needed. relieve hot flashes and other menopausal Any woman currently taking or thinking symptoms. MHT should be used at the Birth control about taking MHT pills should talk with her lowest dose and for the shortest time pills (oral doctor about the risks and benefits. contraceptives) needed to ease menopausal symptoms. Long-term use can increase breast cancer Vaginal creams, suppositories Current or recent use risk and other serious health conditions. and rings of birth control pills There are 2 main types of MHT pills: slightly increases breast Vaginal forms of MHT do not appear to cancer risk. However, estrogen plus progestin and estrogen increase the risk of breast cancer. However, this risk is quite small alone. if you’ve been diagnosed with breast cancer, vaginal estrogen rings and suppositories are because the risk of Estrogen plus progestin MHT breast cancer for most better than vaginal estrogen creams.
    [Show full text]
  • A Guide to Feminizing Hormones – Estrogen
    1 | Feminizing Hormones ​ ​ A Guide to Feminizing Hormones Hormone therapy is an option that can help transgender and gender-diverse people feel more comfortable in their bodies. Like other medical treatments, there are benefits and risks. Knowing what to expect will help us work together to maximize the benefits and minimize the risks. What are hormones? Hormones are chemical messengers that tell the body’s cells how to function, ​ when to grow, when to divide, and when to die. They regulate many functions, including growth, sex drive, hunger, thirst, digestion, metabolism, fat burning & storage, blood sugar, cholesterol levels, and reproduction. What are sex hormones? Sex hormones regulate the development of sex characteristics, including the sex ​ organs such as genitals and ovaries/testicles. Sex hormones also affect the secondary sex characteristics that typically develop at puberty, like facial and body hair, bone growth, breast growth, and voice changes. There are three categories of sex hormones in the body: • Androgens: testosterone, dehydroepiandrosterone (DHEA), ​ dihydrotestosterone (DHT) • Estrogens: estradiol, estriol, estrone ​ • Progestin: progesterone ​ Generally, “males” tend to have higher androgen levels, and “females” tend to have higher levels of estrogens and progestogens. What is hormone therapy? Hormone therapy is taking medicine to change the levels of sex hormones in your body. Changing these levels will affect your hair growth, voice pitch, fat distribution, muscle mass, and other features associated with sex and gender. Feminizing hormone therapy can help make the body look and feel less “masculine” and more “feminine" — making your body more closely match your identity. What medicines are involved? There are different kinds of medicines used to change the levels of sex hormones in your body.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION 1-Palmitoyl-2-oleoyl-sn-glycero-3-PC Item No. 15102 CAS Registry No.: 26853-31-6 Formal Name: 1-palmitoyl-2-oleoyl-sn-glycero-3- O phosphatidylcholine Synonyms: 1-Palmitoyl-2-oleoyl-sn-glycero-3- O O Phosphocholine, 1,2-POPC O MF: C42H82NO8P FW: 760.1 O N+ Purity: ≥98% O P O Supplied as: A crystalline solid O- Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures 1-Palmitoyl-2-oleoyl-sn-glycero-3-PC (1,2-POPC) is supplied as a crystalline solid. A stock solution may be made by dissolving the 1,2-POPC in the solvent of choice, which should be purged with an inert gas. 1,2-POPC is soluble in the organic solvent ethanol at a concentration of approximately 25 mg/ml. Description 1,2-POPC is a phospholipid containing 16:0 and 18:1 fatty acids at the sn-1 and sn-2 positions, respectively. It belongs to a class of phospholipids that are a major component of biological membranes.1,2 This compound can be used for liposome production in order to study the properties of lipid bilayers. References 1. Moreno, M.J., Estronca, L.M.B.B., and Vaz, W.L.C. Translocation of phospholipids and dithionite permeability in liquid-ordered and liquid-disordered membranes. Biophys. J. 91, 873-881 (2006). 2. Heberle, F.A. and Feigenson, G.W. Phase separation in lipid membranes. Cold Spring Harb. Perspect. Biol. 3(4), 1-13 (2011).
    [Show full text]
  • Feminizing Hormone Therapy
    FEMINIZING HORMONE THERAPY Julie Thompson, PA-C Medical Director of Trans Health, Fenway Health April 2020 fenwayhealth.org GOALS AND OBJECTIVES 1. Review process of initiating hormone therapy through the informed consent model 2. Provide an overview of feminizing hormone therapy 3. Review realistic expectations and benefits of hormone therapy vs their associated risks 4. Discuss recommendations for monitoring fenwayhealth.org PROTOCOLS AND STANDARDS OF CARE fenwayhealth.org WPATH STANDARDS OF CARE, 2011 The criteria for hormone therapy are as follows: 1. Well-documented, persistent (at least 6mo) gender dysphoria 2. Capacity to make a fully informed decision and to consent for treatment 3. Age of majority in a given country 4. If significant medical or mental health concerns are present, they must be reasonably well controlled fenwayhealth.org INFORMED CONSENT MODEL ▪ Requires healthcare provider to ▪ Effectively communicate benefits, risks and alternatives of treatment to patient ▪ Assess that the patient is able to understand and consent to the treatment ▪ Informed consent model does not preclude mental health care! ▪ Recognizes that prescribing decision ultimately rests with clinical judgment of provider working together with the patient ▪ Recognizes patient autonomy and empowers self-agency ▪ Decreases barriers to medically necessary care fenwayhealth.org INITIAL VISITS ▪ Review history of gender experience and patient’s goals ▪ Document prior hormone use ▪ Assess appropriateness for gender affirming medical treatment ▪ WPATH criteria
    [Show full text]
  • (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles
    5112 Biophysical Journal Volume 96 June 2009 5112–5121 Profilin Interaction with Phosphatidylinositol (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles Kannan Krishnan,† Oliver Holub,‡ Enrico Gratton,‡ Andrew H. A. Clayton,§ Stephen Cody,§ and Pierre D. J. Moens†* †Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia; ‡Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California; and §Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia ABSTRACT Profilin, a small cytoskeletal protein, and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] have been implicated in cellular events that alter the cell morphology, such as endocytosis, cell motility, and formation of the cleavage furrow during cytokinesis. Profilin has been shown to interact with PI(4,5)P2, but the role of this interaction is still poorly understood. Using giant unilamellar vesicles (GUVs) as a simple model of the cell membrane, we investigated the interaction between profilin and PI(4,5)P2. A number and brightness analysis demonstrated that in the absence of profilin, molar ratios of PI(4,5)P2 above 4% result in lipid demixing and cluster formations. Furthermore, adding profilin to GUVs made with 1% PI(4,5)P2 leads to the forma- tion of clusters of both profilin and PI(4,5)P2. However, due to the self-quenching of the dipyrrometheneboron difluoride-labeled PI(4,5)P2, we were unable to determine the size of these clusters. Finally, we show that the formation of these clusters results in the destabilization and deformation of the GUV membrane.
    [Show full text]
  • ESTROSTEP Fe (Norethindrone Acetate and Ethinyl Estradiol Tablets, USP and Ferrous Fumarate Tablets*) *Ferrous Fumarate Tablets Are Not USP for Dissolution and Assay
    ESTROSTEP Fe (Norethindrone Acetate and Ethinyl Estradiol Tablets, USP and Ferrous Fumarate Tablets*) *Ferrous fumarate tablets are not USP for dissolution and assay. ESTROSTEP® Fe (Each white triangular tablet contains 1 mg norethindrone acetate and 20 mcg ethinyl estradiol; each white square tablet contains 1 mg norethindrone acetate and 30 mcg ethinyl estradiol; each white round tablet contains 1 mg norethindrone acetate and 35 mcg ethinyl estradiol; each brown tablet contains 75 mg ferrous fumarate.) Patients should be counseled that this product does not protect against HIV infection (AIDS) and other sexually transmitted diseases. DESCRIPTION ESTROSTEP® Fe is a graduated estrophasic oral contraceptive providing estrogen in a graduated sequence over a 21-day period with a constant dose of progestogen. ESTROSTEP Fe provides for a continuous dosage regimen consisting of 21 oral contraceptive tablets and seven ferrous fumarate tablets. The ferrous fumarate tablets are present to facilitate ease of drug administration via a 28-day regimen, are non-hormonal, and do not serve any therapeutic purpose. Each white triangle-shaped tablet contains 1 mg norethindrone acetate [(17 alpha)-17- (acetyloxy)-19-norpregna-4-en-20-yn-3-one] and 20 mcg ethinyl estradiol [(17 alpha)-19- norpregna-1,3,5(10)-trien-20-yne-3,17-diol]; each white square-shaped tablet contains 1 mg norethindrone acetate and 30 mcg ethinyl estradiol; and each white round tablet contains 1 mg norethindrone acetate and 35 mcg ethinyl estradiol. Each tablet also contains calcium stearate; lactose; microcrystalline cellulose; and starch. The structural formulas are as follows: Each brown tablet contains ferrous fumarate, mannitol, povidone, microcrystalline cellulose, sodium starch glycolate, magnesium stearate, sucralose and spearmint flavor.
    [Show full text]
  • Cholesterol in Condensed and Fluid Phosphatidylcholine Monolayers Studied by Epifluorescence Microscopy
    Biophysical Journal Volume 72 June 1997 2569-2580 2569 Cholesterol in Condensed and Fluid Phosphatidylcholine Monolayers Studied by Epifluorescence Microscopy Lynn-Ann D. Worthman,* Kaushik Nag,* Philip J. Davis,* and Kevin M. W. Keough*# *Department of Biochemistry and #Discipline of Pediatrics, Memorial University of Newfoundland, St. John's, Newfoundland Al B 3X9, Canada ABSTRACT Epifluorescence microscopy was used to investigate the effect of cholesterol on monolayers of dipalmi- toylphosphatidylcholine (DPPC) and 1 -palmitoyl-2-oleoyl phosphatidylcholine (POPC) at 21 ± 20C using 1 mol% 1 -palmitoyl- 2-{1 2-[(7-nitro-2-1, 3-benzoxadizole-4-yl)amino]dodecanoyl}phosphatidylcholine (NBD-PC) as a fluorophore. Up to 30 mol% cholesterol in DPPC monolayers decreased the amounts of probe-excluded liquid-condensed (LC) phase at all surface pressures (ir), but did not effect the monolayers of POPC, which remained in the liquid-expanded (LE) phase at all 7r. At low (2-5 mN/m), 10 mol% or more cholesterol in DPPC induced a lateral phase separation into dark probe-excluded and light probe-rich regions. In POPC monolayers, phase separation was observed at low IT when .40 mol% or more cholesterol was present. The lateral phase separation observed with increased cholesterol concentrations in these lipid monolayers may be a result of the segregation of cholesterol-rich domains in ordered fluid phases that preferentially exclude the fluorescent probe. With increasing 7r, monolayers could be transformed from a heterogeneous dark and light appearance into a homogeneous fluorescent phase, in a manner that was dependent on ir and cholesterol content. The packing density of the acyl chains may be a determinant in the interaction of cholesterol with phosphatidylcholine (PC), because the transformations in monolayer surface texture were observed in phospholipid (PL)/sterol mixtures having similar molecular areas.
    [Show full text]
  • Combined Estrogen–Progestogen Menopausal Therapy
    COMBINED ESTROGEN–PROGESTOGEN MENOPAUSAL THERAPY Combined estrogen–progestogen menopausal therapy was considered by previous IARC Working Groups in 1998 and 2005 (IARC, 1999, 2007). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.2 Progestogens (a) Chlormadinone acetate Combined estrogen–progestogen meno- Chem. Abstr. Serv. Reg. No.: 302-22-7 pausal therapy involves the co-administration Chem. Abstr. Name: 17-(Acetyloxy)-6-chlo- of an estrogen and a progestogen to peri- or ropregna-4,6-diene-3,20-dione menopausal women. The use of estrogens with IUPAC Systematic Name: 6-Chloro-17-hy- progestogens has been recommended to prevent droxypregna-4,6-diene-3,20-dione, acetate the estrogen-associated risk of endometrial Synonyms: 17α-Acetoxy-6-chloro-4,6- cancer. Evidence from the Women’s Health pregnadiene-3,20-dione; 6-chloro-Δ6-17- Initiative (WHI) of adverse effects from the use acetoxyprogesterone; 6-chloro-Δ6-[17α] of a continuous combined estrogen–progestogen acetoxyprogesterone has affected prescribing. Patterns of exposure Structural and molecular formulae, and relative are also changing rapidly as the use of hormonal molecular mass therapy declines, the indications are restricted, O CH and the duration of the therapy is reduced (IARC, 3 C 2007). CH3 CH3 O C 1.1 Identification of the agents CH3 H O 1.1.1 Estrogens HH For Estrogens, see the Monograph on O Estrogen-only Menopausal Therapy in this Cl volume. C23H29ClO4 Relative molecular mass: 404.9 249 IARC MONOGRAPHS – 100A (b) Cyproterone acetate Structural and molecular formulae, and relative Chem.
    [Show full text]
  • Estrogen Pharmacology. I. the Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man
    Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man Mark N. Mueller, Attallah Kappas J Clin Invest. 1964;43(10):1905-1914. https://doi.org/10.1172/JCI105064. Research Article Find the latest version: https://jci.me/105064/pdf Journal of Clinical Investigation Vol. 43, No. 10, 1964 Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) inMan* MARK N. MUELLER t AND ATTALLAH KAPPAS + WITH THE TECHNICAL ASSISTANCE OF EVELYN DAMGAARD (From the Department of Medicine and the Argonne Cancer Research Hospital,§ the University of Chicago, Chicago, Ill.) This report 1 describes the influence of natural biological action of natural estrogens in man, fur- estrogens on liver function, with special reference ther substantiate the role of the liver as a site of to sulfobromophthalein (BSP) excretion, in man. action of these hormones (5), and probably ac- Pharmacological amounts of the hormone estradiol count, in part, for the impairment of BSP dis- consistently induced alterations in BSP disposal posal that characterizes pregnancy (6) and the that were shown, through the techniques of neonatal period (7-10). Wheeler and associates (2, 3), to result from profound depression of the hepatic secretory Methods dye. Chro- transport maximum (Tm) for the Steroid solutions were prepared by dissolving crystal- matographic analysis of plasma BSP components line estradiol and estriol in a solvent vehicle containing revealed increased amounts of BSP conjugates 10% N,NDMA (N,N-dimethylacetamide) 3 in propylene during estrogen as compared with control pe- glycol. Estradiol was soluble in a concentration of 100 riods, implying a hormonal effect on cellular proc- mg per ml; estriol, in a concentration of 20 mg per ml.
    [Show full text]
  • PROGYNOVA DATA SHEET Vx1.0, CCDS 13 Page 1 of 13 Each Pack Covers 28 Days of Treatment
    NEW ZEALAND DATA SHEET 1 PRODUCT NAME PROGYNOVA 1 mg tablets PROGYNOVA 2 mg tablets 2 QUALITATIVE AND QUANTITATIVE COMPOSITION One tablet contains 1mg of estradiol valerate- Progynova 1mg. One tablet contains 2 mg of estradiol valerate- Progynova 2 mg. 3 PHARMACEUTICAL FORM PROGYNOVA 1 mg: The memo-pack holds 28 beige, biconvex, round tablets, each containing 1.0 mg estradiol valerate. PROGYNOVA 2 mg: The memo-pack holds 28 light white, biconvex, round tablets, each containing 2.0 mg estradiol valerate. All tablets have a lustrous sugar coating and are approximately 7mm in diameter. 4 CLINICAL PARTICULARS 4.1 Therapeutic indications Hormone replacement therapy (HRT) for the treatment of signs and symptoms of estrogen deficiency due to the menopause (whether natural or surgically induced). Prevention of postmenopausal osteoporosis. 4.2 Dose and method of administration Hormonal contraception should be stopped when HRT is started and the patient should be advised to take non-hormonal contraceptive precautions, if required. Hysterectomised patients may start at any time. If the patient is still menstruating and has an intact uterus, a combination regimen of PROGYNOVA and a progestogen should begin within the first 5 days of menstruation (see below for Combination Regimen). Patients whose periods are very infrequent or with amenorrhoea or who are postmenopausal may start at any time, provided pregnancy has been excluded. Women changing from other HRT should complete the current cycle of therapy before initiating PROGYNOVA therapy. Continuous Regimen It does not matter at what time of day the patient takes her tablet(s), but once she has selected a particular time, she should keep to it every day.
    [Show full text]
  • Chiral Supramolecular Architecture of Stable Transmembrane Pores
    www.nature.com/scientificreports OPEN Chiral supramolecular architecture of stable transmembrane pores formed by an α-helical antibiotic peptide in the presence of lyso- lipids Erik Strandberg1, David Bentz2, Parvesh Wadhwani1 & Anne S. Ulrich1,2* The amphipathic α-helical antimicrobial peptide MSI-103 (aka KIA21) can form stable transmembrane pores when the bilayer takes on a positive spontaneous curvature, e.g. by the addition of lyso-lipids. Solid-state 31P- and 15N-NMR demonstrated an enrichment of lyso-lipids in these toroidal wormholes. Anionic lyso-lipids provided additional stabilization by electrostatic interactions with the cationic peptides. The remaining lipid matrix did not afect the nature of the pore, as peptides maintained the same orientation independent of lipid charge, and a change in membrane thickness did not considerably afect their tilt angle. Under optimized conditions (i.e. in the presence of lyso-lipids and appropriate bilayer thickness), stable and well-aligned pores could be obtained for solid-state 2H-NMR analysis. These data revealed for the frst time the complete 3D alignment of this representative amphiphilic peptide in fuid membranes, which is compatible with either monomeric helices as constituents, or left- handed supercoiled dimers as building blocks from which the overall toroidal wormhole is assembled. Membrane-active antimicrobial peptides (AMPs) can kill microorganisms by permeabilizing the cell mem- brane. They are attracting much attention as potential new antibiotics against the increasingly common multidrug-resistant bacterial strains1–4. While it is clear that these peptides can target a wide range of microorgan- isms, the molecular mechanisms of membrane permeabilization are not yet fully characterized.
    [Show full text]
  • Effects of Antidepressants on the Conformation of Phospholipid Headgroups Studied by Solid-State NMR
    MAGNETIC RESONANCE IN CHEMISTRY Magn. Reson. Chem. 2004; 42: 105–114 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mrc.1327 Effects of antidepressants on the conformation of phospholipid headgroups studied by solid-state NMR Jose S. Santos,1† Dong-Kuk Lee1,2 and Ayyalusamy Ramamoorthy1,2,3∗ 1 Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109-1055, USA 2 Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA 3 Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1055, USA Received 10 June 2003; Revised 25 August 2003; Accepted 1 September 2003 The effect of tricyclic antidepressants (TCA) on phospholipid bilayer structure and dynamics was studied to provide insight into the mechanism of TCA-induced intracellular accumulation of lipids (known as lipidosis). Specifically we asked if the lipid–TCA interaction was TCA or lipid specific and if such physical interactions could contribute to lipidosis. These interactions were probed in multilamellar vesicles and mechanically oriented bilayers of mixed phosphatidylcholine–phosphatidylglycerol (PC–PG) phospholipids using 31Pand14N solid-state NMR techniques. Changes in bilayer architecture in the presence of TCAs were observed to be dependent on the TCA’s effective charge and steric constraints. The results further show that desipramine and imipramine evoke distinguishable changes on the membrane surface, particularly on the headgroup order, conformation and dynamics of phospholipids. Desipramine increases the disorder of the choline site at the phosphatidylcholine headgroup while leaving the conformation and dynamics of the phosphate region largely unchanged. Incorporation of imipramine changes both lipid headgroup conformation and dynamics.
    [Show full text]