Hand, Suzanne J. Herds Overhead: Nimbadon Lavarackorum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm. -
A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. -
Revision of Basal Macropodids from the Riversleigh World Heritage Area with Descriptions of New Material of Ganguroo Bilamina Cooke, 1997 and a New Species
Palaeontologia Electronica palaeo-electronica.org Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species K.J. Travouillon, B.N. Cooke, M. Archer, and S.J. Hand ABSTRACT The relationship of basal macropodids (Marsupialia: Macropodoidea) from the Oligo-Miocene of Australia have been unclear. Here, we describe a new species from the Bitesantennary Site within the Riversleigh’s World Heritage Area (WHA), Ganguroo bites n. sp., new cranial and dental material of G. bilamina, and reassess material pre- viously described as Bulungamaya delicata and ‘Nowidgee matrix’. We performed a metric analysis of dental measurements on species of Thylogale which we then used, in combination with morphological features, to determine species boundaries in the fossils. We also performed a phylogenetic analysis to clarify the relationships of basal macropodid species within Macropodoidea. Our results support the distinction of G. bil- amina, G. bites and B. delicata, but ‘Nowidgee matrix’ appears to be a synonym of B. delicata. The results of our phylogenetic analysis are inconclusive, but dental and cra- nial features suggest a close affinity between G. bilamina and macropodids. Finally, we revise the current understanding of basal macropodid diversity in Oligocene and Mio- cene sites at Riversleigh WHA. K.J. Travouillon. School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia and School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia. [email protected] B.N. Cooke. Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia. -
PRIMITIVE MARS UPIAL TAPIRS ( P RO P ALO RCH ESTE~ NOV ACULACEPHALUS MURRA Y and P
The Beagle, Records of the Northern Territory Museum of Arts and Sciences, 19907(2):39-51 PRIMITIVE MARS UPIAL TAPIRS ( p RO p ALO RCH ESTE~ NOV ACULACEPHALUS MURRA y AND P. PONTICULUS SP . NOV .) FROM THE MID-MIOCENE OF NORTH AUSTRALIA (MAR;SUPIALIA: PALORCHESTIDAE). PETER MURRA y Northern Territory Museum of Arts and Sciences, GPO Box 2109, Alice Springs NT 0871, Australia. ABS'iRACT The upper molar dentition of Propalorchestes novaculacephalus demonstrates a transitional state between the bilophodont marsupial tapirs and the selenodont wynyardiids. Although Propalorchestes had developed bilophodont crowns, the metacone and stylar cusp D remained sufficiently differentiated to verify the development of bilophodonty in diprotodontoid (vombatimorphian) marsupials from a selenodont condition, in which the primary buccal cusp is formed by stylar cusp D rather than the metacone. KEYWORDS:Palorchestinae, Wynyardiidae, molar evolution, diprotodontoid sys- tematics, Bullock Creek Local Fauna, Riversleigh "Systems" Fauna. INTRODUCTION ments, a maxilla, a cranial fragment and three isolated teeth. Despite the sparseness and frag- A cranial fragment from the Bullock Creek mentary condition of the sample, it substan- Local Fauna indicated that tapir-Iike marsupi- tially improves our resolution of the sys- als £Palorchestinae) were already highly tematics of the marsupial tapirs and moreover , modified forms by mid- Miocene times and adds a previously unknown transitional ele- that they differed in many significant respects ment to the interpretation of the phylogeny of from the palorchestid Ngapakaldia tedfordi bilophodont dentitions within the Vombati- Stirton (Murray 1986). Several years had morphia. elapsed since the cranium of Propalorchestes The "diprotodontoid" (vombatimorphian) was described before any palorchestine denti- affinity as opposed to a macropodoid (Owen tions from the Camfield Beds came to light. -
A Evolução Dos Metatheria: Sistemática, Paleobiogeografia, Paleoecologia E Implicações Paleoambientais
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ESPECIALIZAÇÃO EM GEOLOGIA SEDIMENTAR E AMBIENTAL LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS RECIFE 2017 LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS Dissertação de Mestrado apresentado à coordenação do Programa de Pós-graduação em Geociências, da Universidade Federal de Pernambuco, como parte dos requisitos à obtenção do grau de Mestre em Geociências Orientador: Prof. Dr. Édison Vicente Oliveira RECIFE 2017 Catalogação na fonte Bibliotecária: Rosineide Mesquita Gonçalves Luz / CRB4-1361 (BCTG) C289e Carneiro, Leonardo de Melo. A evolução dos Metatheria: sistemática, paleobiogeografia, paleoecologia e implicações paleoambientais / Leonardo de Melo Carn eiro . – Recife: 2017. 243f., il., figs., gráfs., tabs. Orientador: Prof. Dr. Édison Vicente Oliveira. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Geociências, 2017. Inclui Referências. 1. Geociêcias. 2. Metatheria . 3. Paleobiogeografia. 4. Paleoecologia. 5. Sistemática. I. Édison Vicente Oliveira (Orientador). II. Título. 551 CDD (22.ed) UFPE/BCTG-2017/119 LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS Dissertação de Mestrado apresentado à coordenação do Programa de Pós-graduação -
Fossils? the Phylogeny of Herpetotheriid and Peradectid Metatherians, Based on New Features from the Petrosal Anatomy S
What are “opossum-like” fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy S. Ladevèze, Charlène Selva, Christian de Muizon To cite this version: S. Ladevèze, Charlène Selva, Christian de Muizon. What are “opossum-like” fossils? The phy- logeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy. Journal of Systematic Palaeontology, Taylor & Francis, 2020, 18 (17), pp.1463-1479. 10.1080/14772019.2020.1772387. hal-03099643 HAL Id: hal-03099643 https://hal.archives-ouvertes.fr/hal-03099643 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 What are “opossum-like” fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy Sandrine Ladevèze, Charlène Selva & Christian de Muizon To cite this article: Sandrine Ladevèze, Charlène Selva & Christian de Muizon (2020): What are “opossum-like” fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2020.1772387 To link to this article: https://doi.org/10.1080/14772019.2020.1772387 View supplementary material Published online: 22 Jun 2020. -
Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina. -
Timing and Dynamics of Late Pleistocene Mammal Extinctions in Southwestern Australia
Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia Gavin J. Prideauxa,1, Grant A. Gullya, Aidan M. C. Couzensb, Linda K. Ayliffec, Nathan R. Jankowskid, Zenobia Jacobsd, Richard G. Robertsd, John C. Hellstrome, Michael K. Gaganc, and Lindsay M. Hatcherf aSchool of Biological Sciences, Flinders University, Bedford Park, South Australia 5042, Australia; bSchool of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia; cResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia; dCentre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; eSchool of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; and fAugusta–Margaret River Tourism Association, Margaret River, Western Australia 6285, Australia Edited by Paul L. Koch, University of California, Santa Cruz, CA, and accepted by the Editorial Board November 1, 2010 (received for review July 27, 2010) Explaining the Late Pleistocene demise of many of the world’s larger tims, falling in alongside sediments and charcoal that were washed terrestrial vertebrates is arguably the most enduring and debated in via now-blocked solution pipes, although tooth marks on some topic in Quaternary science. Australia lost >90% of its larger species bones suggest that the carnivores Sarcophilus and Thylacoleo by around 40 thousand years (ka) ago, but the relative importance played a minor accumulating role. of human impacts and increased aridity remains unclear. Resolving To establish an environmental background against which TEC the debate has been hampered by a lack of sites spanning the last faunal changes could be analyzed, we investigated stratigraphic glacial cycle. -
Cranial Anatomy of the Earliest Marsupials and the Origin of Opossums
Cranial Anatomy of the Earliest Marsupials and the Origin of Opossums Ine´s Horovitz1*, Thomas Martin2, Jonathan Bloch3, Sandrine Ladeve`ze4¤, Cornelia Kurz5, Marcelo R. Sa´nchez-Villagra4* 1 Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America, 2 Steinmann-Institut fu¨r Geologie, Mineralogie und Pala¨ontologie, Universita¨t Bonn, Bonn, Germany, 3 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America, 4 Palaeontologisches Institut und Museum, Zu¨rich, Switzerland, 5 Naturkundemuseum im Ottoneum Kassel, Kassel, Germany Abstract Background: The early evolution of living marsupials is poorly understood in part because the early offshoots of this group are known almost exclusively from jaws and teeth. Filling this gap is essential for a better understanding of the phylogenetic relationships among living marsupials, the biogeographic pathways that led to their current distribution as well as the successive evolutionary steps that led to their current diversity, habits and various specializations that distinguish them from placental mammals. Methodology/Principal Findings: Here we report the first skull of a 55 million year old peradectid marsupial from the early Eocene of North America and exceptionally preserved skeletons of an Oligocene herpetotheriid, both representing critical groups to understand early marsupial evolution. A comprehensive phylogenetic cladistic analysis of Marsupialia including the new findings and close relatives of marsupials show that peradectids are the sister group of living opossums and herpetotheriids are the sister group of all living marsupials. Conclusions/Significance: The results imply that North America played an important role in early Cenozoic marsupial evolutionary history and may have even been the center of origin of living marsupials and opossums. -
A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition. -
1 TABLE S1 Global List of Extinct and Extant Megafaunal Genera By
Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky TABLE S1 Global list of extinct and extant megafaunal genera by continent. STATUS TAXON TIME AFRICA Mammalia Carnivora Felidae Acinonyx Panthera Hyaenidae Crocuta Hyaena Ursidae Ursusa Primates Gorilla Proboscidea Elephantidae C Elephas <100 Loxodonta Perissodactyla Equidae S Equus <100 E Hipparion <100 Rhinocerotidae Ceratotherium Diceros E Stephanorhinus <100 Artiodactyla Bovidae Addax Ammotragus Antidorcas Alcelaphus Aepyceros C Bos 11.5-0 Capra Cephalopus Connochaetes Damaliscus Gazella S Hippotragus <100 Kobus E Rhynotragus/Megalotragus 11.5-0 Oryx E Pelorovis 11.5-0 E Parmulariusa <100 Redunca Sigmoceros Syncerus Taurotragus Tragelaphus Camelidae C Camelus <100 1 Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky Cervidae E Megaceroides <100 Giraffidae S Giraffa <100 Okapia Hippopotamidae Hexaprotodon Hippopotamus Suidae Hylochoerus Phacochoerus Potamochoerus Susa Tubulidenta Orycteropus AUSTRALIA Reptilia Varanidae E Megalania 50-15.5 Meiolanidae E Meiolania 50-15.5 E Ninjemys <100 Crocodylidae E Palimnarchus 50-15.5 E Quinkana 50-15.5 Boiidae? E Wonambi 100-50 Aves E Genyornis 50-15.5 Mammalia Marsupialia Diprotodontidae E Diprotodon 50-15.5 E Euowenia <100 E Euryzygoma <100 E Nototherium <100 E Zygomaturus 100-50 Macropodidae S Macropus 100-50 E Procoptodon <100 E Protemnodon 50-15.5 E Simosthenurus 50-15.5 E Sthenurus 100-50 Palorchestidae E Palorchestes 50-15.5 Thylacoleonidae E Thylacoleo 50-15.5 Vombatidae S Lasiorhinus <100 E Phascolomys <100 E Phascolonus 50-15.5 E Ramsayia <100 2 Supplemental Material: Annu. -
The Chinchilla Local Fauna: an Exceptionally Rich and Well-Preserved Pliocene Vertebrate Assemblage from Fluviatile Deposits of South-Eastern Queensland, Australia
The Chinchilla Local Fauna: An exceptionally rich and well-preserved Pliocene vertebrate assemblage from fluviatile deposits of south-eastern Queensland, Australia JULIEN LOUYS and GILBERT J. PRICE Louys, J. and Price, G.J. 2015. The Chinchilla Local Fauna: An exceptionally rich and well-preserved Pliocene verte- brate assemblage from fluviatile deposits of south-eastern Queensland, Australia. Acta Palaeontologica Polonica 60 (3): 551–572. The Chinchilla Sand is a formally defined stratigraphic sequence of Pliocene fluviatile deposits that comprise interbed- ded clay, sand, and conglomerate located in the western Darling Downs, south-east Queensland, Australia. Vertebrate fossils from the deposits are referred to as the Chinchilla Local Fauna. Despite over a century and a half of collection and study, uncertainties concerning the taxa in the Chinchilla Local Fauna continue, largely from the absence of stratigraph- ically controlled excavations, lost or destroyed specimens, and poorly documented provenance data. Here we present a detailed and updated study of the vertebrate fauna from this site. The Pliocene vertebrate assemblage is represented by at least 63 taxa in 31 families. The Chinchilla Local Fauna is Australia’s largest, richest and best preserved Pliocene ver- tebrate locality, and is eminently suited for palaeoecological and palaeoenvironmental investigations of the late Pliocene. Key words: Mammalia, Marsupialia, Pliocene, Australia, Queensland, Darling Downs. Julien Louys [[email protected]], Department of Archaeology and Natural History, School of Culture, History, and Languages, ANU College of Asia and the Pacific, The Australian National University, Canberra, 0200, Australia. Gilbert J. Price [[email protected]], School of Earth Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.