Mites in Wheat Fact Sheet No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wheat Streak Mosaic Virus on Wheat: Biology and Management
Wheat Streak Mosaic Virus on Wheat: Biology and Management B.A.R. Hadi,1 M.A.C. Langham, L. Osborne, and K. J. Tilmon Plant Science Department, South Dakota State University, Brookings, SD 57006 1Corresponding author, e-mail: [email protected]. J. Integ. Pest Mngmt. 1(2): 2011; DOI: 10.1603/IPM10017 ABSTRACT. Wheat streak mosaic virus is a virus that infects wheat and is transmitted by the wheat curl mite. This virus is responsible for wheat streak mosaic, a widely distributed disease of wheat that can cause economically important yield losses. The current viral taxonomy, vector biology, disease cycle, and management options of Wheat streak mosaic virus are reviewed in this article. Key Words: Wheat streak mosaic virus; wheat curl mite Downloaded from https://academic.oup.com/jipm/article/2/1/J1/2194262 by guest on 23 September 2021 Wheat streak mosaic virus infects both winter and spring wheat Wheat streak mosaic virus was originally placed in the genus Rymo- (Triticum aestivum L.) in the United States and abroad. Depending on virus with other mite-transmitted viruses of Potyviridae. A phyloge- environmental conditions (wet, dry, cool, or hot weather), yield loss netic analysis of Wheat streak mosaic virus using its completed because of Wheat streak mosaic virus infections can surpass 60% nucleotide sequence demonstrated that it shares most recent common (Langham et al. 2001a). Wheat streak mosaic virus is transmitted by ancestry with the whitefly-transmitted Sweet potato mild mottle virus the wheat curl mite, Aceria tosichella Keifer (Acari: Eriophyidae). and not with Ryegrass mosaic virus, the type member of genus Wheat is the preferred host for wheat curl mite and an excellent host Rymovirus. -
2016 Supported by the Oklahoma Wheat Commission
artners in P rogress P W H E A T Wheat Research at OSU 2016 Supported by the Oklahoma Wheat Commission and the Oklahoma Wheat Research Foundation Oklahoma State University Division of Agricultural Sciences and Natural Resources Oklahoma Agricultural Experiment Station Oklahoma Cooperative Extension Service P-1048 artners in rogress PP W H E A T Wheat Research at OSU 2016 Supported by the Oklahoma Wheat Commission and the Oklahoma Wheat Research Foundation Oklahoma State University Division of Agricultural Sciences and Natural Resources Oklahoma Agricultural Experiment Station Oklahoma Cooperative Extension Service P-1048 The pesticide information presented in this publication was current with federal and state regulations at the time of printing. The user is responsible for determining that the intended use is consistent with the label of the product being used. Use pesticides safely. Read and follow label directions. The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied. Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, and Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discrimi- nate on the basis of race, color, national origin, genetic information, sex, age, sexual orientation, gender identity, religion, disability, or status as a veteran, in any of its policies, practices or procedures. -
Grain Color Stability and Classification of Hard White Wheat in the U.S
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2001 Grain color stability and classification of hard white wheat in the U.S. C. J. Peterson D. R. Shelton T. J. Martin R. G. Sears E. Williams See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Peterson, C. J.; Shelton, D. R.; Martin, T. J.; Sears, R. G.; Williams, E.; and Graybosch, R. A., "Grain color stability and classification of hard white wheat in the U.S." (2001). Publications from USDA-ARS / UNL Faculty. 225. https://digitalcommons.unl.edu/usdaarsfacpub/225 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors C. J. Peterson, D. R. Shelton, T. J. Martin, R. G. Sears, E. Williams, and R. A. Graybosch This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdaarsfacpub/225 Euphytica 119: 101–106, 2001. 101 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Grain color stability and classification of hard white wheat in the U.S. C.J. Peterson, D.R. Shelton, -
Grain Grading Primer
Marketing and Regulatory Programs Grain Agricultural Marketing Service Grading Federal Grain Inspection Service Washington, D.C. Primer October 2016 United States Department of Agriculture Agricultural Marketing Service Federal Grain Inspection Service Informational Reference October 2016 Grain Grading Primer Foreword The effectiveness of the U.S. grain inspection system depends largely on an inspector’s ability to sample, inspect, grade, and certify the various grains for which standards have been established under the United States Grain Standards Act, as amended. This publication is designed primarily to provide information and instruction for producers, grain handlers, and students on how grain is graded. It is not designed for Official grain inspectors for they must necessarily use more detailed instruction than that provided herein. In view of this fact, the Federal Grain Inspection Service, published the Grain Inspection Handbook, Book II, Grain Grading Procedures, which documents the step-by-step procedures needed to effectively and efficiently inspect grain in accordance with the Official United States Standards for Grain. The mention of firm names or trade products does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar approved products not mentioned. Foreword Table of Contents The U.S. Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). -
Turfgrass Selection Ryegrasses
Extension W159-F Turfgrass Selection Ryegrasses Tom Samples, Professor and John Sorochan, Associate Professor Plant Sciences Due to rapid seed germination and seedling growth, ryegrasses were once planted as nurse Varieties grasses in seed ‘Florida 80’ (1982, Florida AES), ‘Gulf’ (1958, mixtures with Texas AES and Plant Research Division ARS), slower-growing, ‘Jackson’ (1989, Mississippi AFES), ‘Marshall’ perennial cool- (1980, Mississippi AFES) and ‘TAM 90’ (1991, season species Texas AES) continue to be used to temporarily including the control soil erosion in the South. ‘Axcella,’ fescues and evaluated as ABT-99-3-268 and recently (2001) Kentucky released by the Texas AES, Overton, Texas, is the bluegrass. first turf-type variety marketed for winter over- Unfortunately, seeding of bermudagrass turfs. This variety is an ryegrasses early-maturing, dwarf-type and is darker than can be very other annual ryegrasses. Axcella has finer leaves, aggressive in greater stand density and a slower vertical growth mixed stands, and may dominate a preferred rate than many other annual ryegrasses. Seeds turfgrass species by competing for nutrients, of Axcella annual ryegrass are about 25 percent sunlight, water and space. Intermediate (Lolium larger than perennial ryegrass seeds. When over- hybridum) and perennial (Lolium perenne L.) seeded alone or with varieties of intermediate ryegrasses are sometimes used to over-seed and perennial ryegrasses, Axcella matures quickly dormant bermudagrass. Annual ryegrass (Lolium and transitions from the stand as bermudagrass multiflorum Lam.) is widely used to provide resumes growth in spring. temporary ground cover and soil erosion control until a perennial turf can be planted. Intermediate Ryegrass Annual Ryegrass Intermediate or transitional ryegrass is a hybrid Annual ryegrass, also known as Italian ryegrass, of annual and perennial ryegrass. -
Introduction to Arthropod Groups What Is Entomology?
Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders, -
Population Structure and Genome-Wide Association Studies In
www.nature.com/scientificreports OPEN Population structure and genome‑wide association studies in bread wheat for phosphorus efciency traits using 35 K Wheat Breeder’s Afymetrix array Preman R. Soumya1,5, Amanda J. Burridge2, Nisha Singh3, Ritu Batra1, Renu Pandey 1*, Sanjay Kalia4, Vandana Rai3 & Keith J. Edwards2 Soil bioavailability of phosphorus (P) is a major concern for crop productivity worldwide. As phosphatic fertilizers are a non‑renewable resource associated with economic and environmental issues so, the sustainable option is to develop P use efcient crop varieties. We phenotyped 82 diverse wheat (Triticum aestivum L.) accessions in soil and hydroponics at low and sufcient P. To identify the genic regions for P efciency traits, the accessions were genotyped using the 35 K‑SNP array and genome‑ wide association study (GWAS) was performed. The high‑quality SNPs across the genomes were evenly distributed with polymorphic information content values varying between 0.090 and 0.375. Structure analysis revealed three subpopulations (C1, C2, C3) and the phenotypic responses of these subpopulations were assessed for P efciency traits. The C2 subpopulation showed the highest genetic variance and heritability values for numerous agronomically important traits as well as strong correlation under both P levels in soil and hydroponics. GWAS revealed 78 marker‑trait associations (MTAs) but only 35 MTAs passed Bonferroni Correction. A total of 297 candidate genes were identifed for these MTAs and their annotation suggested their involvement in several biological process. Out of 35, nine (9) MTAs were controlling polygenic trait (two controlling four traits, one controlling three traits and six controlling two traits). -
Life History of the Honey Bee Tracheal Mite (Acari: Tarsonemidae)
ARTHROPOD BIOLOGY Life History of the Honey Bee Tracheal Mite (Acari: Tarsonemidae) JEFFERY S. PETTIS1 AND WILLIAM T. WILSON Honey Bee Research Unit, USDA-ARS, 2413 East Highway 83, Weslaco, TX 78596 Ann. Entomol. Soc. Am. 89(3): 368-374 (1996) ABSTRACT Data on the seasonal reproductive patterns of the honey bee tracheal mite, Acarapis woodi (Rennie), were obtained by dissecting host honey bees, Apis mellifera L., at intervals during their life span. Mite reproduction normally was limited to 1 complete gen- eration per host bee, regardless of host life span. However, limited egg laying by foundress progeny was observed. Longer lived bees in the fall and winter harbored mites that reproduced for a longer period than did mites in bees during spring and summer. Oviposition rate was relatively uniform at =0.85 eggs per female per day during the initial 16 d of adult bee life regardless of season. In all seasons, peak mite populations occurred in bees =24 d old, with egg laying declining rapidly beyond day 24 in spring and summer bees but more slowly in fall and winter bees. Stadial lengths of eggs and male and female larvae were 5, 4, and 5 d, respectively. Sex ratio ranged from 1.15:1 to 2.01:1, female bias, but because males are not known to migrate they would have been overestimated in the sampling scheme. Fecundity was estimated to be =21 offspring, assuming daughter mites laid limited eggs in tracheae before dispersal. Mortality of adult mites increased with host age; an estimate of 35 d for female mite longevity was indirectly obtained. -
Yuma Spider Mite on Citrus Can Be Con- Ing and Easily Skipped
which normally begins blooming betweer January 10 and 14. Under these condi tions, supplemental feeding should bc done between December 20 and 25 tc prepare colonies for almond pollinatior in February. The date of the first natura. bloom will vary with plant species grow YUMA ing in winter locations of colonies. Feeding colonies with Beevert twc weeks before they entered alfalfa seed SPIDER MITE fields for pollination in 1968 resulted in a 15 per cent increase in the amount oj pollen collected during alfalfa bloom. The consistency of results obtained in ON CITRUS these four Fresno County bee feeding ex. periments suggests it is advisable for bee. keepers in this area to feed weak colonies in the fall and to feed all colonies two and H. S. ELMER a half to three weeks before the first nat. ural bloom after winter to increase the strength of bee colonies for almond pol- lination. When natural pollen supplies are HE YUMA SPIDER MITE, Eotetrany- plant may be the native host of this mite not adequate, supplemental feeding of Tchns yumensis (McGregor) , was species. natural pollen or natural pollen mixed first observed near Yuma, Arizona, in The body of the Yuma spider mite is with drivert sugar has stimulated an in- about 1928 by J. L. E. Lauderdale, and usually pinkish but may become quite crease in egg laying. Weak colonie: was described in 1934 by E. A. McGregor dark, particularly in older adults. It re- should also be fed two and a half to three from specimens collected on lemon foli- sembles the six-spotted mite, E. -
Lista De Alimentos Autorizados De
WIC de Autorizados Alimentos de Lista Octubre de 2018 de Octubre Fecha de Entrada en vigor vigor en Entrada de Fecha De conformidad con la Ley Federal de Derechos Civiles y los reglamentos y políticas de derechos civiles del Departamento de Agricultura de los EE. UU. (USDA, por sus siglas en inglés), se prohíbe que el USDA, sus agencias, oficinas, empleados e instituciones que participan o administran programas del USDA discriminen sobre la base de raza, color, nacionalidad, sexo, discapacidad, edad, o en represalia o venganza por actividades previas de derechos civiles en algún programa o actividad realizados o financiados por el USDA. Las personas con discapacidades que necesiten medios alternativos para la comunicación de la información del programa (por ejemplo, sistema Braille, letras grandes, cintas de audio, lenguaje de señas americano, etc.), deben ponerse en contacto con la agencia (estatal o local) en la que solicitaron los beneficios. Las personas sordas, con dificultades de audición o discapacidades del habla pueden comunicarse con el USDA por medio del Federal Relay Service [Servicio Federal de Retransmisión] al (800) 877-8339. Además, la información ¿PREGUNTAS? del programa se puede proporcionar en otros idiomas. Pregunte al personal de WIC o llame a la oficina Para presentar una denuncia de discriminación, complete el Formulario de Denuncia de Discriminación del Programa del USDA, (AD-3027) que está WIC de Maryland al 1-800-242-4942 o visite nuestro disponible en línea en: http://www.ascr.usda.gov/complaint_filing_cust.html y en cualquier oficina del USDA, o bien escriba una carta dirigida al USDA e sitio web en www.mdwic.org incluya en la carta toda la información solicitada en el formulario. -
RYEGRASSES the 17Th in a Series by R.W
UNDERSTANDING TURF MANAGEMENT RYEGRASSES the 17th in a series by R.W. Sheard, P. Ag. yegrass originally developed as a grass is more difficult to mow than other are formed. The stems will resist mowing Rpasture grass which would withstand turfgrass species. A whitish appearance, by reel mowers giving the sports field a close grazing and had a superior ability to due to shredded, mutilated leaves, may be ragged appearance. produce meat and milk. Even today nitro- observed if the mower becomes dull. A second disadvantage is the lack of cold gen-fertilized ryegrass is the preferred A second advantage of ryegrass is the tolerance. More recent cultivar introduc- animal feed for cattle in the Netherlands. relatively rapid germination and emer- tions of turf type perennial ryegrass, how- The early settlers in New Zealand fell and gence rate. Under favourable temperature ever, have increase cold tolerance. Unless burnt the forests, then threw Ryegrass seed conditions of 12 - 25°C, ryegrass will good snow cover can be assure in areas in the ashes to develop one of great intro- emerge in 5 to 8 days. Thus ryegrass is the with severe winters winter kill can be a duced grazing environments in the world. preferred species for oversee ding in the serious problem. late spring or early fall. In oversee ding Ryegrass is susceptible to leaf rusts. In The Ryegrass Family operations rapid germination of the rye- August and early September rust can re- grass increases its competition potential duce the vigour and quality of pure rye- There are about ten species of ryegrass with weed species, such as annual blue- grass stands growing at low levels of which have been botanically identified, grass, which may also be germinating. -
Forage Grass Notes Perennial Ryegrass (Lolium Perenne)
Forage Grass Notes Perennial Ryegrass (Lolium perenne) Introduction Perennial ryegrass is a cool season bunch grass High quality perennial, the choice for pasture where adapted – best adjusted to wet mild temperate climates (New Zealand and Great Britain) Perennial ryegrass can withstand considerable grazing management and remain productive Growth and Morphology Root system is very fibrous, leaves are prominently ribbed on the upper side and shiny on the bottom Leaves are folded in the bud as compared to the fescues which are rolled in the bud Leaf sheaths are red to purple at the base Optimum growth occurs at temperatures 20°- 25°C Grows best on fertile, well-drained soils - does best on soil with pH 6 -7 Much less persistent than orchardgrass, meadow fescue, timothy or bromegrass - susceptible to winter kill and crown r ust- major reasons why its not more highly utilized in Eastern Canada Importance and Use Considered a premier quality grazing species Perennial ryegrass has greater dry matter digestibility than other temperate perennial grass species Produces good dairy pasture, though excellent for all classes of livestock Graze between 20-25 cm tall down to 5 cm stubble - Yield and persistence better under rotational grazing Perennial ryegrass can also be harvested as silage or hay Rapid germination and quick establishment make it a preferred species for sod seeding where adapted Culture and Management Recommended seeding rat es are 7 kg/ha in mixture with 8 kg/ha meadow fescue, 3 kg/ha white clover and 5 kg/ha timothy for pasture Seed in early spring for best results Persistence is best under rotational grazing rather than continuous grazing Apply P&K based on soil test - Nitrogen should be applied in split applications at rates relative to legume content.