Thesis Coenie Goosen
Total Page:16
File Type:pdf, Size:1020Kb
University of Groningen Identification and characterization of glycoside hydrolase family 32 enzymes from Aspergillus niger Goosen, Coenie IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Goosen, C. (2007). Identification and characterization of glycoside hydrolase family 32 enzymes from Aspergillus niger. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 02-10-2021 References REFERENCES Abarca, M. L., Accensi, F., Cano, J. & Cabanes, F. J. (2004). Taxonomy and significance of black aspergilli. Antonie Van Leeuwenhoek 86 , 33-49. Akimoto, H., Kushima, T., Nakamura, T. & Ohta, K. (1999). Transcriptional analysis of two endoinulinase genes inuA and inuB in Aspergillus niger and nucleotide sequences of their promoter regions. J Biosci Bioeng 88 , 599–604. Akimoto, H., Kiyota, N., Kushima, T., Nakamura, T. & Ohta, K. (2000). Molecular cloning and sequence analysis of an endoinulinase gene from Penicillium sp. strain TN-88. Biosci Biotechnol Biochem 64 , 2328-2335. Alberto, F., Bignon, C., Sulzenbacher, G., Henrissat, B. & Czjzek, M. (2004). The three- dimensional structure of invertase ( β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem 279 , 18903-18910. Alberto, F., Jordi, E., Henrissat, B. & Czjzek, M. (2006). Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem J 395 , 457-462. Altenbach, D., Nuesch, E., Ritsema, T., Boller, T. & Wiemken, A. (2005). Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT. FEBS Lett 579 , 4647-4653. Arand, M., Golubev, A. M., Neto, J. R. N. & other authors (2002). Purification, charaterization, gene cloning and preliminary X-ray data of the exo-inulase from Aspergillus awamori . Biochem J 362 , 131-135. 141 References Arnold, J. & Hilton, N. (2003). Genome sequencing: Revelations from a bread mould. Nature 422 , 821-822. Bach Knudsen, K. E. & Hessov, I. (1995). Recovery of inulin from Jerusalem artichoke (Helianthus tuberosus L .) in the small intestine of man. Br J Nutr 74 , 101-113. Bairoch, A. (2000). The ENZYME database in 2000. Nucleic Acids Res 28 , 304-305. Balakrishnan, M., Simmonds, R. S. & Tagg, J. R. (2006). Dental caries is a preventable infectious disease. Aust Dent J 45 , 235-245. Barbier, O., Girard, C., Breton, R., Belanger, A. & Hum, D. W. (2000). N-glycosylation and residue 96 are involved in the functional properties of UDP-glucuronosyltransferase enzymes. Biochemistry 39 , 11540-11552. Batista, F. R., Hernandez, L., Fernandez, J. R., Arrieta, J., Menendez, C., Gomez, R., Tambara, Y. & Pons, T. (1999). Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. Biochem J 337 , 503-506. Beisel, H. G., Kawabata, S., Iwanaga, S., Huber, R. & Bode, W. (1999). Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus . Embo J 18 , 2313-2322. Bendtsen, J. D., Jensen, L. J., Blom, N., von Heijne, G. & Brunak, S. (2004). Feature- based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17 , 349–356. Bennet, J. W., Lasure, L. L., Bennet, J. W. & Lasure, L. L. (1991). Growth Media. In More gene manipulation in fungi , pp. 441-457. New York: Academic Press. Bhatti, H. N., Asgher, M., Abbas, A., Nawaz, R. & Sheikh, M. A. (2006). Studies on kinetics and thermostability of a novel acid invertase from Fusarium solani J Agric Food Chem 54 , 4617-4623. 142 References Boddy, L. M., Berges, T., Barreau, C., Vainstein, M. H., Dobson, M. J., Ballance, D. J. & Peberdy, J. F. (1993). Purification and characterisation of an Aspergillus niger invertase and its DNA sequence. Curr Genet 24 , 60-66. Bos, C. J., Debets, A. J., Swart, K., Huybers, A., Kobus, G. & Slakhorst, S. M. (1988). Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14 , 437-443. Burne, R. A. & Penders, J. E. (1992). Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-beta-D-fructosidase. Infect Immun 60 , 4621-4632. Cairns, A. J. & Ashton, J. E. (1991). The interpretation of in vitro measurements of fructosyl transferase activity: an analysis of patterns of fructosyl transfer by fungal invertase. New Phytol 118 , 24-33. Cairns, A. J. (2003). Fructan biosynthesis in transgenic plants. J Exp Bot 54 , 549-567. Carroll, S. B. (2003). Genetics and the making of Homo sapiens . Nature 422 , 849-857. Cerning, J. (1990). Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 87 , 113-130. Cha´vez, F. P., Pons, T., Delgado, J. M. & Rodrı´guez, L. (1998). Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis. Yeast 14 , 1223– 1232. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. & Thompson, J. D. (2003) . Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31 , 3497–3500 Chiou, C. Y., Wang, H. H. & Shaw, G. C. (2002). Identification and characterization of the non-PTS fru locus of Bacillus megaterium ATCC 14581. Mol Genet Genomics 268 , 240–248. 143 References Collins, F. S., Green, E. D., Guttmacher, A. E. & Guyer, M. S. (2003a). A vision for the future of genomics research. Nature 422 , 835-847. Collins, F. S., Morgan, M. & Patrinos, A. (2003b). The Human Genome Project: lessons from large-scale biology. Science 300 , 286-290. Coudray, C., Rambeau, M., Feillet-Coudray, C., Tressol, J. C., Demigne, C., Gueux, E., Mazur, A. & Rayssiguier, Y. (2005). Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: a stable isotope approach. Nutr J 4, 29. Coutinho, P. M., Henrissat, B., Gilbert, H. J., Davies, G., Henrissat, B. & Svensson, B. (1999). Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering , pp. 3-12. Cambridge: The Royal Society of Chemistry. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome Res 14 , 1188-1190. Cummings, J. H., Macfarlane, G. T. & Englyst, H. N. (2001). Prebiotic digestion and fermentation. Am J Clin Nutr 73 , 415S-420S. Davies, G. & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure 3, 853-859. Davies, G. J., Wilson, K. S. & Henrissat, B. (1997). Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321 , 557-559. Delzenne, N. M. & Kok, N. (2001). Effects of fructan-type prebiotics on lipid metabolism. Am J Clin Nutr 73 , 456-458. de Ruiter-Jacobs, Y. M., Broekhuijsen, M., Unkles, S. E., Campbell, E. I., Kinghorn, J. R., Contreras, R., Pouwels, P. H. & van den Hondel, C. A. (1989). A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 16 , 159-163. 144 References de Vries, R. P., van Grieken, C., van Kuyk, P. A. & Wo¨ sten, H. A. B. (2005). The value of genome sequences in the rapid identification of novel genes encoding specific plant cell wall degrading enzymes. Curr Genom 6, 157–187. Dorta, C., Cruz, R., de Oliva-Neto, P. & Moura, D. J. (2006). Sugarcane molasses and yeast powder used in the Fructooligosaccharides production by Aspergillus japonicus -FCL 119T and Aspergillus niger ATCC 20611. J Ind Microbiol Biotechnol 33 , 1003-1009. Dowzer, C. E. & Kelly, J. M. (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans . Mol Cell Biol 11 , 5701-5709. Druart, N., De Roover, J., Van den Ende, W., Goupil, P., Van Laere, A. & Rambour, S. (2001). Sucrose assimilation during early developmental stages of chicory ( Cichorium intybus L.) plants. Planta 212 , 436-443. Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics 14 , 755–763. Ettalibi, M. & Baratti, J. C. (1987). Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Appl Microbiol Biotechnol 26 , 13-20. Ettalibi, M. & Baratti, J. C. (2001). Sucrose hydrolysis by thermostable immobilized inulinases from Aspergillus ficuum . Enzyme Microb Technol 28 , 596-601. Fleischmann, R. D., Adams, M. D., White, O. & other authors (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269 , 496-512. Frazier, M. E., Johnson, G. M., Thomassen, D. G., Oliver, C. E. & Patrinos, A. (2003). Realizing the potential of the genome revolution: The Genomes to Life Program. Science 300 , 290-293. Fuchs, A., de Bruijn, J. M. & Niedeveld, C. J. (1983). Bacteria and yeasts as possible candidates for the production of inulinases and levanases.