Physical Model Tests and Numerical Simulation for Assessing the Stability of Tunnels
Total Page:16
File Type:pdf, Size:1020Kb
Physical Model Tests and Numerical Simulation for Assessing the Stability of Tunnels Han-Mei Chen Thesis submitted to The University of Nottingham For the degree of Doctor of Philosophy July 2014 This thesis is dedicated to my grandma, my parents and my husband. ABSTRACT Nowadays, numerical modelling is increasingly used to assess the stability of tunnels and underground caverns. However, an analysis of the mechanical behaviour of existing brick-lined tunnels remains challenging due to the complex material components. One promising approach is to carry out a series of small-scale physical tunnel model tests representing the true behaviour of a prototype under extreme loading in order to validate and develop the corresponding numerical models. A physical model test is advisable before any field study, which might be dangerous and costly. During the tests, advanced monitoring techniques such as the laser scanning and photogrammetry would be used to register tunnel deformation and lining defects. This investigation will show how these may substitute or supplement the conventional manual procedures. Simultaneously, numerical models will be developed, primarily using FLAC and UDEC software, to simulate the physical models after comparing their results. In this way, numerical simulations of physical models would be achieved and verified. These numerical models could then be applied to the field study in the future research, enabling accurate prediction of the actual mechanical behaviour of a masonry tunnel, in combination with advanced monitoring techniques. i ACKNOWLEDGEMENTS Firstly, I am heartily grateful to my supervisor Prof. Hai-Sui Yu and Dr. Martin Smith who continuously support and encourage me throughout this research project. I am greatly indebted to them whose guidance was invaluable to me. I would also like to cherish the memory of my supervisor Dr. David Reddish who passed away for his academic guidance and care. Without him, I would not be able to enjoy my work as I am. I would also like to express my gratitude to the senior experimental officer Dr. Nikolaos Kokkas and the former research fellow Dr. Philip Rowsell for their advice and assistance on my research. I am thankful to all technicians working in the Nottingham Centre for Geomechanics and the laboratory of Civil Engineering for providing their assistance throughout the experimental work. Finally, my sincere thanks go to my family members and friends who always supporting me during the PhD course in The University of Nottingham, UK. ii TABLE OF CONTENTS ABSTRACT ............................................................................................................. i ACKNOWLEDGEMENTS ................................................................................... ii TABLE OF CONTENTS ..................................................................................... iii Chapter 1 INTRODUCTION ............................................................................ 1 1.1 Challenges ...................................................................................................... 1 1.2 Aim ................................................................................................................. 2 1.2.1 Objectives ................................................................................................ 2 1.2.2 Methodology ............................................................................................ 2 1.3 Structure of the thesis ..................................................................................... 3 Chapter 2 LITERATURE REVIEW ................................................................ 5 2.1 Introduction .................................................................................................... 5 2.2 Stability concerns of tunnels .......................................................................... 5 2.2.1 Terminology in tunnelling ....................................................................... 5 2.2.2 Permanent linings ................................................................................... 6 2.2.3 Hazards ................................................................................................. 11 2.2.4 Regular inspection ................................................................................ 22 2.2.5 Maintenance .......................................................................................... 23 2.2.6 Summary ................................................................................................ 24 2.3 Tunnel monitoring methods ......................................................................... 25 2.3.1 General introduction ............................................................................. 25 iii 2.3.2 Monitoring tunnel distortions and convergence ................................... 25 2.3.3 Identifying damaged defects on tunnel shells........................................ 30 2.3.4 Final discussion .................................................................................... 44 2.4 Masonry structure review ............................................................................. 44 2.4.1 Introduction to masonry structures ....................................................... 44 2.4.2 Brick bond patterns ............................................................................... 45 2.4.3 Brick/Mortar/Brickwork properties ...................................................... 49 2.5 Numerical modelling review ........................................................................ 58 2.5.1 Introduction to numerical simulation strategies ................................... 58 2.5.2 Numerical analysis of masonry structures ............................................ 59 2.6 Chapter summary ......................................................................................... 64 Chapter 3 PHYSICAL MODEL TESTS ........................................................ 65 3.1 Introduction .................................................................................................. 65 3.2 Design of physical model tests ..................................................................... 66 3.2.1 Mortar mix proportion .......................................................................... 66 3.2.2 Loading style ......................................................................................... 67 3.2.3 Test variations ....................................................................................... 67 3.3 Design of a physical model .......................................................................... 68 3.3.1 General introduction ............................................................................. 68 3.3.2 Brick bond pattern................................................................................. 69 3.3.3 Rigid box ............................................................................................... 69 iv 3.4 Physical model materials.............................................................................. 70 3.4.1 Brick ...................................................................................................... 70 3.4.2 Mortar ................................................................................................... 71 3.4.3 Surrounding soil .................................................................................... 72 3.5 Model construction and loading process ...................................................... 73 3.5.1 Construction of brickwork liner ............................................................ 74 3.5.2 Rigid box ............................................................................................... 76 3.5.3 Plastic sheeting ..................................................................................... 78 3.5.4 Surrounding soil .................................................................................... 78 3.5.5 Loading system installation .................................................................. 79 3.5.6 Loading procedures .............................................................................. 81 3.6 Tunnel monitoring instrumentation ............................................................. 82 3.6.1 Advanced monitoring techniques .......................................................... 82 3.6.2 Potentiometer ........................................................................................ 85 3.7 Test results of the first and the second models under uniform load............. 86 3.7.1 Ultimate load capacity and tunnel mode of failure ............................... 86 3.7.2 Deflection behaviour ............................................................................. 88 3.7.3 Cracking behaviour ............................................................................... 91 3.8 Test results of the third model under concentrated load .............................. 92 3.8.1 Ultimate capacity and tunnel mode of failure ....................................... 92 3.8.2 Deflection behaviour ............................................................................. 95 v 3.8.3 Cracking behaviour ............................................................................... 97 3.9 Post-processing work of advanced monitoring techniques .......................... 98 3.9.1 General introduction ............................................................................. 98 3.9.2 Tunnel monitoring and data processing of measurements using photogrammetry