The Real Time Data & Forecasting Project

Total Page:16

File Type:pdf, Size:1020Kb

The Real Time Data & Forecasting Project California DWR’s Real-Time Data and Forecasting Project: Modeling to Avoid Unpleasant Surprises Ted Swift Municipal Water Quality Program, Office of Water Quality, California Dept. of Water Resources [email protected] Outline • Introduction – Project goals – Relation to other RTDF efforts • Modeling Components – Watersheds, – Sacramento-San Joaquin Delta, – Aqueduct(s) • Model Products and Services • Questions & Comments Project Goals • “Avoid unpleasant surprises” • Provide data and information to source water and system managers, municipal treatment plant operators, researchers, and stakeholders to: – optimize and balance resource use, – promote science-based decision making, and – promote economic efficiency. RTDF “Three-legged stool”: Modeling leg Data Collection Prediction Evolve to meet Emerging Concerns WARMF Watershed DSM2 Model Station Maintenance & Enhancement DSM2 Aqueduct Extension Model Meet User Needs Data QA/QC Visualization Dissemination Storage Information Dissemination Linking Sources to Destinations • Watersheds • Delta • Aqueducts Modeling, Forecasting, Fingerprinting • Provide: “Early Warning” capability to interested parties • Hydrodynamic modeling of Delta and Aqueduct (DSM2) • “Fingerprinting” water sources (volume), and constituents (EC and DOC) • Future: Biogeochemical processes and hypothesis testing Modeling Where does municipal water come from? Will source water quality change, and if so, can we predict it in advance? • Modeling as a collaborative team: MWQI, the Bay-Delta Office, and DWR O&M • Three models (among others): – Watershed Analysis Risk Management Framework (WARMF) Model for Sacramento and San Joaquin River watersheds. – Delta Simulation Model 2 (DSM2) for the Delta. – DSM2 Aqueduct Extension for the Federal CVP Delta-Mendota Canal and the State California Aqueduct. Modeling Efforts and Components • WARMF model: Watersheds • DSM2 Model: Sacramento-San Joaquin River Delta • DSM2 Aqueduct Extension Model: State Water Project & Central Valley Project (East Bay, South Bay, Central and Southern California) Sacramento WARMF Watershed Models River Basin • Provide connection between precipitation and water quality and quantity. • In calibration and validation San Joaquin River Basin Marcia Scavone-Tansey, MWQI WARMF Watershed Model Basins • Sacramento River • San Joaquin River • East Side Streams Joel Herr, Systech Joel Herr, Systech Delta Simulation Model 2 (DSM2): From Rivers and Islands to the Pumps Sacramento • DSM2 Model Grid Rio Vista Benicia 10 0 Antioch Stockton Tracy Aqueduct Extension Model • East Bay Branch • Delta-Mendota Canal • California Aqueduct • East Branch • West Branch Shannon, Wikipedia DSM2 Aqueduct Extension: From the Pumps to the Farms and Cities Modeling Information Products • Source Water “Fingerprinting” • Forecasting (Short-Term & Seasonal) Modeled EC Fingerprint at Clifton Court Forebay Forecasted EC at South Bay Pumping Plant EC-Martinez EC-Delta EC-EAST 800 EC-SJR EC-Sac EC 700 700 600 600 500 500 400 400 EC (us/cm) EC 300 300 200 200 With Transfers 100 100 Base Case 0 EC Source Contributions, uS/cm uS/cmContributions, EC Source 0 10-Sep-13 17-Sep-13 24-Sep-13 01-Oct-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 Date EC at Aqueduct Check structures 2,13,41 and for Silverwood Lake; Inflows 90% Exceedance Level; D1641 Restrictive May_2013 Allocation Study 900 800 700 600 500 400 EC EC (us/cm) 300 Check 2 200 Check 13 Check 41 100 Silverwood 0 May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 Nov-13 Dec-13 Date Fingerprinting What sources contribute to water constituents, and how does it vary? Source Time Tracking Tracking The bucket contains water from The water from each source several water sources: traveled at varying rates: • Tributary Rivers, •This week, last week, • San Francisco Bay, •last month, etc. • Agricultural Drains, etc. Sacramento River San Joaquin River Martinez (Seawater) Flood Bypass East Side Rvrs Ag. Drainage Example Fingerprints Modeled Volumetric Fingerprint at Clifton Court Forebay Martinez Delta East SJR Sac 100% Modeled EC Fingerprint at Clifton Court Forebay 80% EC-Martinez EC-Delta EC-EAST EC-SJR EC-Sac EC 700 60% 600 500 40% 400 20%300 Percent of Source Water Water ofSourcePercent 200 1000% May-13 Jun-13 Jul-13 ModeledAug-13 DOC FingerprintSep-13 at Clifton Court Forebay EC Source Contributions, uS/cm uS/cmContributions, EC Source 0 May-13 Jun-13 Jul-13 Aug-13 Sep-13 DOC-Delta DOC-EAST DOC-SJR DOC-SAC DOC H.O. Banks PP 6 5 4 3 2 1 0 DOC Source Contributions, mg/L mg/L Contributions, Source DOC May-13 Jun-13 Jul-13 Aug-13 Sep-13 Example Fingerprints, Continued Modeled Volumetric Fingerprint at Clifton Court Forebay Martinez Delta East SJR Sac 100% Modeled EC Fingerprint at Clifton Court Forebay 80% EC-Martinez EC-Delta EC-EAST EC-SJR EC-Sac EC 700 60% 600 500 40% 400 20%300 Percent of Source Water Water ofSourcePercent 200 1000% May-13 Jun-13 Jul-13 Aug-13 Sep-13 EC Source Contributions, uS/cm uS/cmContributions, EC Source 0 May-13 Jun-13 Jul-13 Aug-13 Sep-13 Example Fingerprints, concluded Modeled Volumetric Fingerprint at Clifton Court Forebay Martinez Delta East SJR Sac 100% 80% 60% 40% Modeled DOC Fingerprint at Clifton Court Forebay 20% Percent of Source Water Water ofSourcePercent DOC-Delta DOC-EAST DOC-SJR DOC-SAC DOC H.O. Banks PP 0% 6 May-13 Jun-13 Jul-13 Aug-13 Sep-13 5 4 3 2 1 0 DOC Source Contributions, mg/L mg/L Contributions, Source DOC May-13 Jun-13 Jul-13 Aug-13 Sep-13 Water Quality Forecasts • Short term (future ~3 weeks)Sacramento Forecasted EC at South Bay Pumping Plant • Seasonal (future ~7 months)800 700 • Constituents: EC, Bromide,600 DOC 500 400 EC (us/cm) EC 300 200 With Transfers 100 Base Case 0 Rio Vista 10-Sep-13 17-Sep-13 24-Sep-13 01-Oct-13 Date EC at Aqueduct Check structures 2,13,41 and for Benicia Silverwood Lake; Inflows 90% Exceedance Level; D1641 Restrictive May_2013 Allocation Study 10 0 900 800Antioch 700 Stockton 600 500 (as of last400 week) EC EC (us/cm) 300 Check 2 200 Check 13 Check 41 100 Silverwood 0 Tracy May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 Nov-13 Dec-13(as of May 2013) Date RTDF Program results: Innovative uses of information • An Early-Warning System for Source Water Managers, State & Federal Project Operators, Treatment Plant Operators • An information source for Water Contaminant Sources, Transport and Loads for Scientists, Agencies • Monitor and Model Transport of Contaminants from Different Sources • Determine Priority Sources for Watershed Protection Efforts • RTDF operates a data dissemination website (http://water.ca.gov/waterquality/drinkingwater/rtdf_rprt.cfm) – updated daily; – users can access real-time, forecasted, and historical data and information; – Data are organized according to watersheds and constituents Questions and Comments ? Ted Swift, Ph.D. Municipal Water Quality Investigations Branch, Office of Water Quality, California Dept. of Water Resources [email protected].
Recommended publications
  • The Colorado River Aqueduct
    Fact Sheet: Our Water Lifeline__ The Colorado River Aqueduct. Photo: Aerial photo of CRA Investment in Reliability The Colorado River Aqueduct is considered one of the nation’s Many innovations came from this period in time, including the top civil engineering marvels. It was originally conceived by creation of a medical system for contract workers that would William Mulholland and designed by Metropolitan’s first Chief become the forerunner for the prepaid healthcare plan offered Engineer Frank Weymouth after consideration of more than by Kaiser Permanente. 50 routes. The 242-mile CRA carries water from Lake Havasu to the system’s terminal reservoir at Lake Mathews in Riverside. This reservoir’s location was selected because it is situated at the upper end of Metropolitan’s service area and its elevation of nearly 1,400 feet allows water to flow by gravity to the majority of our service area The CRA was the largest public works project built in Southern California during the Great Depression. Overwhelming voter approval in 1929 for a $220 million bond – equivalent to a $3.75 billion investment today – brought jobs to 35,000 people. Miners, engineers, surveyors, cooks and more came to build Colorado River the aqueduct, living in the harshest of desert conditions and Aqueduct ultimately constructing 150 miles of canals, siphons, conduits and pipelines. They added five pumping plants to lift water over mountains so deliveries could then flow west by gravity. And they blasted 90-plus miles of tunnels, including a waterway under Mount San Jacinto. THE METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA // // JULY 2021 FACT SHEET: THE COLORADO RIVER AQUEDUCT // // OUR WATER LIFELINE The Vision Despite the city of Los Angeles’ investment in its aqueduct, by the early 1920s, Southern Californians understood the region did not have enough local supplies to meet growing demands.
    [Show full text]
  • Winter Chinook Salmon in the Central Valley of California: Life History and Management
    Winter Chinook salmon in the Central Valley of California: Life history and management Wim Kimmerer Randall Brown DRAFT August 2006 Page ABSTRACT Winter Chinook is an endangered run of Chinook salmon (Oncorhynchus tshawytscha) in the Central Valley of California. Despite considerablc efforts to monitor, understand, and manage winter Chinook, there has been relatively little effort at synthesizing the available information specific to this race. In this paper we examine the life history and status of winter Chinook, based on existing information and available data, and examine the influence of various management actions in helping to reverse decades of decline. Winter Chinook migrate upstream in late winter, mostly at age 3, to spawn in the upper Sacramento River in May - June. Embryos develop through summer, which can expose them to high temperatures. After emerging from the spawning gravel in -September, the young fish rear throughout the Sacramento River before leaving the San Francisco Estuary as smolts in January­ March. Blocked from access to their historical spawning grounds in high elevations of the Sacramento River and tributaries, wintcr Chinook now spawn below Kcswick Dam in cool tail waters of Shasta Dam. Their principal environmental challcnge is temperature: survival of embryos was poor in years when outflow from Shasta was warm or when the fish spawned below Red Bluff Diversion Dam (RBDD), where river temperature is higher than just below Keswick. Installation of a temperature control device on Shasta Dam has reduccd summer temperature in the discharge, and changes in operations of RBDD now allow most winter Chinook access to the upper river for spawning.
    [Show full text]
  • San Luis Unit Project History
    San Luis Unit West San Joaquin Division Central Valley Project Robert Autobee Bureau of Reclamation Table of Contents The San Luis Unit .............................................................2 Project Location.........................................................2 Historic Setting .........................................................4 Project Authorization.....................................................7 Construction History .....................................................9 Post Construction History ................................................19 Settlement of the Project .................................................24 Uses of Project Water ...................................................25 1992 Crop Production Report/Westlands ....................................27 Conclusion............................................................28 Suggested Readings ...........................................................28 Index ......................................................................29 1 The West San Joaquin Division The San Luis Unit Approximately 300 miles, and 30 years, separate Shasta Dam in northern California from the San Luis Dam on the west side of the San Joaquin Valley. The Central Valley Project, launched in the 1930s, ascended toward its zenith in the 1960s a few miles outside of the town of Los Banos. There, one of the world's largest dams rose across one of California's smallest creeks. The American mantra of "bigger is better" captured the spirit of the times when the San Luis Unit
    [Show full text]
  • CALIFORNIA AQUEDUCT SUBSIDENCE STUDY San Luis Field Division San Joaquin Field Division
    State of California California Natural Resources Agency DEPARTMENT OF WATER RESOURCES Division of Engineering CALIFORNIA AQUEDUCT SUBSIDENCE STUDY San Luis Field Division San Joaquin Field Division June 2017 State of California California Natural Resources Agency DEPARTMENT OF WATER RESOURCES Division of Engineering CALIFORNIA AQUEDUCT SUBSIDENCE STUDY Jeanne M. Kuttel ......................................................................................... Division Chief Joseph W. Royer .......................... Chief, Geotechnical and Engineering Services Branch Tru Van Nguyen ............................... Supervising Engineer, General Engineering Section G. Robert Barry .................. Supervising Engineering Geologist, Project Geology Section by James Lopes ................................................................................ Senior Engineer, W.R. John M. Curless .................................................................. Senior Engineering Geologist Anna Gutierrez .......................................................................................... Engineer, W.R. Ganesh Pandey .................................................................... Supervising Engineer, W.R. assisted by Bradley von Dessonneck ................................................................ Engineering Geologist Steven Friesen ...................................................................... Engineer, Water Resources Dan Mardock .............................................................................. Chief, Geodetic
    [Show full text]
  • Overview of The: Sacramento-San Joaquin Delta Where Is the Sacramento-San Joaquin Delta?
    Overview of the: Sacramento-San Joaquin Delta Where is the Sacramento-San Joaquin Delta? To San Francisco Stockton Clifton Court Forebay / California Aqueduct The Delta Protecting California from a Catastrophic Loss of Water California depends on fresh water from the Sacramento-San Joaquin Delta (Delta)to: Supply more than 25 million Californians, plus industry and agriculture Support $400 billion of the state’s economy A catastrophic loss of water from the Delta would impact the economy: Total costs to California’s economy could be $30-40 billion in the first five years Total job loss could exceed 30,000 Delta Inflow Sacramento River Delta Cross Channel San Joaquin River State Water Project Pumps Central Valley Project Pumps How Water Gets to the California Economy Land Subsidence Due to Farming and Peat Soil Oxidation - 30 ft. - 20 ft. - 5 ft. Subsidence ~ 1.5 ft. per decade Total of 30 ft. in some areas - 30 feet Sea Level 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento 6.5 Earthquake—Resulting in 20 Islands Being Flooded Aerial view of the Delta while flying southwest over Sacramento The Importance of the Delta Water flowing through the Delta supplies water to the Bay Area, the Central Valley and Southern California.
    [Show full text]
  • Transitions for the Delta Economy
    Transitions for the Delta Economy January 2012 Josué Medellín-Azuara, Ellen Hanak, Richard Howitt, and Jay Lund with research support from Molly Ferrell, Katherine Kramer, Michelle Lent, Davin Reed, and Elizabeth Stryjewski Supported with funding from the Watershed Sciences Center, University of California, Davis Summary The Sacramento-San Joaquin Delta consists of some 737,000 acres of low-lying lands and channels at the confluence of the Sacramento and San Joaquin Rivers (Figure S1). This region lies at the very heart of California’s water policy debates, transporting vast flows of water from northern and eastern California to farming and population centers in the western and southern parts of the state. This critical water supply system is threatened by the likelihood that a large earthquake or other natural disaster could inflict catastrophic damage on its fragile levees, sending salt water toward the pumps at its southern edge. In another area of concern, water exports are currently under restriction while regulators and the courts seek to improve conditions for imperiled native fish. Leading policy proposals to address these issues include improvements in land and water management to benefit native species, and the development of a “dual conveyance” system for water exports, in which a new seismically resistant canal or tunnel would convey a portion of water supplies under or around the Delta instead of through the Delta’s channels. This focus on the Delta has caused considerable concern within the Delta itself, where residents and local governments have worried that changes in water supply and environmental management could harm the region’s economy and residents.
    [Show full text]
  • Simulation of Flows and Water Quality in the California Aqueduct Using DSM2
    Simulation of Flows and Water Quality in the California Aqueduct Using DSM2 Siqing Liu, Bob Suits DWR, Bay Delta Office, Modeling Support Branch 2011 CWEMF Annual Meeting, February 28 –March 2 1 Topics • Project objectives • Aqueduct System modeled • Assumptions / issues with modeling • Model results –Flows / Storage, EC, Bromide 2 Objectives Simulate Aqueduct hydraulics and water quality • 1990 – 2010 period • DSM2 Aqueduct version calibrated by CH2Mhill Achieve 1st step in enabling forecasting Physical System Canals simulated • South Bay Aqueduct (42 miles) • California Aqueduct (444 miles) • East Branch to Silverwood Lake • West Branch to Pyramid Lake (40 miles) • Delta‐Mendota Canal (117 miles) 4 Physical System, cont Pumping Plants Banks Pumping Plant Buena Vista (Check 30) Jones Pumping Plant Teerink (Check 35) South Bay Chrisman (Check 36) O’Neill Pumping-Generating Edmonston (Check 40) Gianelli Pumping-Generating Alamo (Check 42) Dos Amigos (Check 13) Oso (West Branch) Las Perillas (Costal branch) Pearblossom (Check 58) 5 Physical System, cont Check structures and gates • Pools separated by check structures throughout the aqueduct system (SWP: 66, DMC: 21 ) • Gates at check structures regulate flow rates and water surface elevation 6 Physical System, cont Turnout and diversion structures • Water delivered to agricultural and municipal contractors through diversion structures • Over 270 diversion structures on SWP • Over 200 turnouts on DMC 7 Physical System, cont Reservoirs / Lakes Represented as complete mixing of water body •
    [Show full text]
  • Power and Energy Technical Report, DEIS
    Draft Power and Energy Technical Report Shasta Lake Water Resources Investigation, California Prepared by: U.S. Department of the Interior Bureau of Reclamation Mid-Pacific Region U.S. Department of the Interior Bureau of Reclamation June 2013 Contents Contents Chapter 1 Affected Environment ....................................................................................... 1-1 Environmental Setting .............................................................................................................. 1-1 Shasta Lake and Vicinity ................................................................................................. 1-7 Upper Sacramento River (Shasta Dam to Red Bluff) ...................................................... 1-9 Lower Sacramento River and Delta ............................................................................... 1-10 CVP/SWP Service Areas ............................................................................................... 1-12 Chapter 2 Modeling Results ................................................................................................ 2-1 Chapter 3 Bibliography ....................................................................................................... 3-1 Tables Table 1-1. Central Valley Project Power Plants, Capacities, and Historical Annual Generation ................................................................................................................. 1-5 Table 1-2. Major State Water Project Facilities, Capacities, and Historical Power Generation
    [Show full text]
  • USGS 7.5-Minute Image Map for Clifton Court Forebay, California
    O C O A C T S N I O U C U.S. DEPARTMENT OF THE INTERIOR Q CLIFTON COURT FOREBAY QUADRANGLE A A U.S. GEOLOGICAL SURVEY R O CALIFORNIA T J 4 N N 7.5-MINUTE SERIES O Union Island A n█ C 121°37'30" 35' S 32'30" 121°30' 6 000m 6 6 6 6 6 6 6 6 6270000 FEET 37°52'30" 22 E 23 24 25 26 27 28 29 30 37°52'30" C S A O N N T J 6 5 . R . .. O ( . .. 4 ! 3 2 2 . .. 3 .. .. A A C Q U Victoria O I S N Island T C 2140000 A O 4192000mN CAMINO DIABLO C O CAMINO DIABLO FEET 4192 Widdows Island 7 8 10 Eucalyptus 9 10 11 11 Island Old 41 h Riv 91 g Kings er u o l . Island . S ... 4191 . n n .. D a R i l I I a T t T I E . N . O . .. .. .... B . .. .. S CAL PACK RD . .. .. 4190 ... ○ 4190 . ... ... ... .. 14 ... 18 17 Coney Island 16 15 . 15 . .. .. 14 . ... .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. ... Clifton Court . .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. Forebay . .. .. .. .. .. .. .. ........ ... .. ....... .. .. T1S R4E CLIFTON CT RD 4189 4189 CLIFTON CT . .. .. .... .... Union Island . .... .. .. .. Brushy ... Cr ... .. .. Imagery................................................NAIP, January 2010 Roads..............................................©2006-2010 Tele Atlas Names...............................................................GNIS, 2010 50' 50' Hydrography.................National Hydrography Dataset, 2010 Contours............................National Elevation Dataset, 2010 4188 23 22 HOLEY RD 23 19 20 21 22 23 Byron 41 Byron 88 Airport Airport t 24 c u d e u q A a a i n r o f i l . a .
    [Show full text]
  • Loc Anggtres
    -oF tr .|, t{ g,% g;? Loc AngGtres .::r,/i::). :,:.-,:, i:;.,...:..,. t,:. :ta:t : :.::r,: :'i ;.: :: :,.. ..,::al :,..1r,t:::,:.,:,:),,,::::. 1., ::.a..-'r.:...':.. .::t ...: ..., :. ji ::. ::::,,, :., 'Y4,,'.' ;i :a ;t:tl:tL.;::it),, : t,, :t : :,.. ii:::L/l*t:::;:l:t ,,:.:,::4,;..:)t ltat1a:: ..''.r.;r.,. :... "aa:::.):.;..t.:..:,,:':. : :'.:.. : :..: .. .:.. ..:it.;:- ' -',.;t:tt :: ; \a:.:la ::a.: a;::. :: :::),;::.: 1:., .::|ttLl:t:.:, ;a.r.:r)... - )a;t:t::i::.,.. 1)'i'?'ilt: ',.uriiti#i.]trEj* MAPS in greater detail are illustrated on these pages: PAGE 16 PAGE t4 L0$ ilnuilnr 0mns till$r luusilu$l $yttum I'A OJ AV E PAGE 6 Los Angeles-Owens River Aqueduct Castaic Hydroelectric Fairmont Resetvoir '.?;lil"anatN-Z Reservoir \y SAUGU S Los ,ll: ''r,. i,.' AN G ELES Semi-arid Los Angeles receives water from three Paralleling the Aqueduct is a portion of major aqueduct systems: The Los Angeles Owens the 846 mile long (1350 kilometers) , 800,000 volt River Aqueducts, the Colorado Aqueduct and the direct current Pacific Intertie transmission system which California Aqueduct (State Water Project) . Owned by brings energy from hydroelectric generating stations on the City and extending 340 miles (540 kilometers) the Columbia River to the Los Angeles area. northerly {rom Los Angeles, the Los Angeles Owens In describing the many features of historical and River Aqueduct System taps the vast eastern slope scenic interest on the Eastern slopes of the Sierra snow fields of California's Sierra Nevada and their Nevada and the Los Angeles Owens River Aqueduct derivative streams and lakes to provide power and 80 System, it is the DWP's goal to create an understanding percent of the water for the West's largest city.
    [Show full text]
  • California's Water-Energy Relationship
    CALIFORNIA ENERGY COMMISSION California's Water – Energy Relationship Prepared in Support of the 2005 Integrated EPORT Energy Policy Report Proceeding (04-IEPR-01E) R TAFF S INAL F NOVEMBER 2005 CEC-700-2005-011-SF Arnold Schwarzenegger, Governor 1 CALIFORNIA ENERGY COMMISSION Primary Author Gary Klein California Energy Commission Martha Krebs Deputy Director Energy Research and Development Division Valerie Hall Deputy Director Energy Efficiency & Demand Analysis Division Terry O’Brien Deputy Director Systems Assessment & Facilities Siting Division B. B. Blevins Executive Director DISCLAIMER This paper was prepared as the result of work by one or more members of the staff of the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this paper; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This paper has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this paper. 2 ACKNOWLEDGEMENTS The California’s Water-Energy Relationship report is the product of contributions by many California Energy Commission staff and consultants, including Ricardo Amon, Shahid Chaudhry, Thomas S. Crooks, Marilyn Davin, Joe O’Hagan, Pramod Kulkarni, Kae Lewis, Laurie Park, Paul Roggensack, Monica Rudman, Matt Trask, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working Group who so graciously gave of their time and expertise to inform this report.
    [Show full text]
  • 550. Regulations for General Public Use Activities on All State Wildlife Areas Listed
    550. Regulations for General Public Use Activities on All State Wildlife Areas Listed Below. (a) State Wildlife Areas: (1) Antelope Valley Wildlife Area (Sierra County) (Type C); (2) Ash Creek Wildlife Area (Lassen and Modoc counties) (Type B); (3) Bass Hill Wildlife Area (Lassen County), including the Egan Management Unit (Type C); (4) Battle Creek Wildlife Area (Shasta and Tehama counties); (5) Big Lagoon Wildlife Area (Humboldt County) (Type C); (6) Big Sandy Wildlife Area (Monterey and San Luis Obispo counties) (Type C); (7) Biscar Wildlife Area (Lassen County) (Type C); (8) Buttermilk Country Wildlife Area (Inyo County) (Type C); (9) Butte Valley Wildlife Area (Siskiyou County) (Type B); (10) Cache Creek Wildlife Area (Colusa and Lake counties), including the Destanella Flat and Harley Gulch management units (Type C); (11) Camp Cady Wildlife Area (San Bernadino County) (Type C); (12) Cantara/Ney Springs Wildlife Area (Siskiyou County) (Type C); (13) Cedar Roughs Wildlife Area (Napa County) (Type C); (14) Cinder Flats Wildlife Area (Shasta County) (Type C); (15) Collins Eddy Wildlife Area (Sutter and Yolo counties) (Type C); (16) Colusa Bypass Wildlife Area (Colusa County) (Type C); (17) Coon Hollow Wildlife Area (Butte County) (Type C); (18) Cottonwood Creek Wildlife Area (Merced County), including the Upper Cottonwood and Lower Cottonwood management units (Type C); (19) Crescent City Marsh Wildlife Area (Del Norte County); (20) Crocker Meadow Wildlife Area (Plumas County) (Type C); (21) Daugherty Hill Wildlife Area (Yuba County)
    [Show full text]