Helena Mining Region Montana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pump Product Catalog
Pump Division Pump Product Catalog Experience In Motion Pump Supplier to the World Flowserve is the driving force in the global Product Brands of Distinction industrial pump marketplace. No other pump ACEC™ Centrifugal Pumps company in the world has the depth or breadth of expertise in the successful application of Aldrich™ Pumps pre-engineered, engineered, and special purpose Byron Jackson ® Pumps pumps and systems. Calder™ Energy Recovery Devices Cameron™ Pumps Durco ® Process Pumps Flowserve ® Pumps IDP ® Pumps INNOMAG ® Sealless Pumps Lawrence Pumps ® Niigata Worthington™ Pumps Pacific ® Pumps Pleuger ® Pumps Scienco™ Pumps Sier-Bath ® Rotary Pumps TKL™ Pumps United Centrifugal ® Pumps Western Land Roller™ Irrigation Pumps Wilson-Snyder ® Pumps Worthington ® Pumps 2 Worthington Simpson™ Pumps flowserve.com Pump Designs Flowserve offers a wide range of complementary pump types, built to recognized global standards Committed to the Complete Pump and customer specification. These include: System Life Cycle • Single-stage process • Between bearings single-stage For more than two centuries, Flowserve has • Between bearings multistage served industries requiring solutions that add value and reduce costs throughout the life • Vertical cycle of a pumping system. • Submersible motor • Oil and gas • Positive displacement • Chemical • Nuclear • Power generation • Specialty • Water Available Configurations • General industry Flowserve partners • Sealed and sealless with customers to • Axially and radially split respond to the • Volute and diffuser dynamic business • Close coupled and spacer coupled conditions that • Single and double case affect them and to improve efficiency, maximize throughput and control process quality. Whether customer needs involve on-site technical assistance, equipment upgrades or broader project planning with full turnkey responsibility, Flowserve delivers professional, reliable results. -
UNIVERSITY of CALIFORNIA RIVERSIDE a New
UNIVERSITY OF CALIFORNIA RIVERSIDE A New Species of an Enigmatic Fossil Taxon: Ischadites n. sp., a Middle Ordovician Receptaculitid From the Great Basin, Western USA A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Geological Sciences by Sara E Henry June 2014 Thesis Committee: Dr. Mary L. Droser, Chairperson Dr. Nigel C. Hughes Dr. Richard Minnich Copyright by Sara E Henry 2014 The Thesis of Sara E Henry is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Mary L. Droser, for her continuous support throughout my graduate studies, field work, and research. I’d additionally like to thank the rest of my committee: Dr. Nigel C. Hughes and Dr. Richard Minnich for their encouragement, insight, and guidance. Dr. Ganqing Jiang of the University of Nevada, Las Vegas, assisted with stratigraphic measurements and provided valuable consultation on sedimentological interpretation in the field. Illustrations of Ischadites n. sp. were produced by my very talented brother, Mr. Keith R. Henry. Several field assistants allowed for large bulk sampling of fossils over multiple field work excursions: T. Beck, M. Nonu, R. Theroux, and J. Minor. Special thanks to L. Graham and T. Beck for lab work assistance. Field work required for this project was funded by the Geological Society of America, the Society for Sedimentary Geology, and the Gulf Coast Section of the Society for Sedimentary Geology. Lastly, I have to thank my parents, Kim and Susan Henry, for their unwavering support, patience, and encouragement. -
Dark Souls™ Series By: BANDAI NAMCO Entertainment Inc
1 Contents Introduction . 3 Character Activations . 22 Overview . 22 Game Contents . 4 Character Movement . 22 Setup . 8 Character Attacks . 22 Initial Setup . 8 Enemy Activations . 24 Setup After the Mini Boss . 9 Overview . 24 Tiles and Nodes . 10 Enemy Movement . 24 The Basics . 10 Enemy Attacks . 25 Node Movement . 10 Boss Encounters . 26 Range . 10 Boss Basics . 26 Node Model Limits . 10 Boss Data Cards . 26 Characters . 11 Behaviour Cards . 27 Character Boards . 11 Boss Arcs . 27 Estus Flask Tokens . 11 Starting a Boss Encounter . 28 Luck Tokens . 11 Ending a Boss Encounter . 28 Equipment . 12 Boss Activations . 29 Equipment Cards . 12 Overview . 29 Upgrade Cards . 12 Boss Attacks . 29 Equipment Modifiers . 12 Boss Movement . 29 Embers . 12 Boss Activation Example . 30 The Bonfire Tile . 13 Post-Game Ritual . 31 Home Base . 13 Blacksmith Andre . 14 The Firekeeper . 15 Resting at the Bonfire . 15 Exploration . 16 Into the Dungeon . 16 The Fog Gate . 16 Campaign Rules . 32 Introduction . 32 Encounter Setup . 17 Encounter Cards . 17 Rules of the Campaign . 33 Terrain . 17 Setup . 33 Trap Tokens . 18 Adding and Dropping Players . 33 Encounter Setup Example . 18 Dashing Through . 33 Sparks . 33 Encounters . 19 Progressing through The Basics . 19 the Campaign . 33 Activating Models . 19 The Bonfire Tile . 33 Ending an Encounter . 19 Campaign Scenarios Combat Basics . 20 Using the Core Set . 34 Target versus Hit . 20 The Endurance Bar . 20 The First Journey . 34 Enemy Data Cards . 20 The Coiled Sword . 36 Pushing . 21 Conditions . 21 Campaign -
Metasomatized Lithospheric Mantle for Mesozoic Giant
https://doi.org/10.1130/G46662.1 Manuscript received 19 June 2019 Revised manuscript received 18 October 2019 Manuscript accepted 21 October 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 22 November 2019 Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton Zaicong Wang1*, Huai Cheng1, Keqing Zong1, Xianlei Geng1, Yongsheng Liu1, Jinhui Yang2, Fuyuan Wu2, Harry Becker3, Stephen Foley4 and Christina Yan Wang5 1 State Key Laboratory of Geological Processes and Mineral Resources (GPMR), School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 2 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 3 Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin 12249, Germany 4 Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia 5 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ABSTRACT to designate as crustal metamorphism-related The origin of giant lode gold deposits of Mesozoic age in the North China craton (NCC) is orogenic Au deposits because they formed prior enigmatic because high-grade metamorphic ancient crust would be highly depleted in gold. to 1.8 Ga after high-grade metamorphism of the Instead, lithospheric mantle beneath the crust is the likely source of the gold, which may have crust, which would have been strongly deplet- been anomalously enriched by metasomatic processes. However, the role of gold enrichment ed in gold and fluids (Goldfarb and Santosh, and metasomatism in the lithospheric mantle remains unclear. Here, we present comprehensive 2014; Goldfarb and Groves, 2015). -
Geothermometry of Selected Montana Hot Spring Waters by Michael
Geothermometry of selected Montana hot spring waters by Michael Bernard Kaczmarek A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE with concentration in Geology Montana State University © Copyright by Michael Bernard Kaczmarek (1974) Abstract: The base temperature of hot-water dominated hydro-thermal systems can be quantitatively estimated using two different methods. One method uses the concentration of dissolved silica in the discharge wasters in equilibrium with respect to quarts. The other method is based on the ha, K, and Ca concentrations in the discharge waters in equilibrium with solid mineral phases in the wall rocks. Experimental studies and practical applications of these two hydrogeothermometers have been largely limited to the temperature range of 200 to 360°C. This paper presents some results of application of both methods in the temperature range 15 to 150°C. Dissolved silica calculated base temperatures are reliable for undiluced thermal waters in the temperature range studied. Sources of error are cold water dilution of thermal waters and assimilation of silica from amorphous silica in wall rocks. Base temperatures calculated from Na, K, and Ca concentrations in discharge waters are generally inaccurate. Errors in the calculated temperatures result from the fact that net water/rock reactions in the temperature range 15 to 150°C may be significantly different from those in the range 200 to 360°C, Net water/ rock reactions for the temperature range 15 to 150°C are presented here and the importance of E-mica versus kaolinite mineral phase stability is discussed. -