Discovery of an O-Mannosylation Pathway Selectively Serving Cadherins and Protocadherins

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of an O-Mannosylation Pathway Selectively Serving Cadherins and Protocadherins Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins Ida Signe Bohse Larsena,1, Yoshiki Narimatsua,1, Hiren Jitendra Joshia,1, Lina Siukstaitea, Oliver J. Harrisonb, Julia Braschb, Kerry M. Goodmanb, Lars Hansena, Lawrence Shapirob,c,d, Barry Honigb,c,d,e, Sergey Y. Vakhrusheva, Henrik Clausena, and Adnan Halima,2,3 aDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, DK-2200 Copenhagen, Denmark; bDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; cZuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032; dDepartment of Systems Biology, Columbia University, New York, NY 10032; and eHoward Hughes Medical Institute, Columbia University, New York, NY 10032 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved September 6, 2017 (received for review May 22, 2017) The cadherin (cdh) superfamily of adhesion molecules carry muscular dystrophies that have been designated α-dystroglyca- O-linked mannose (O-Man) glycans at highly conserved sites nopathies because deficient O-Man glycosylation of α-DG dis- localized to specific β-strands of their extracellular cdh (EC) domains. rupts the interaction between the dystrophin glycoprotein complex These O-Man glycans do not appear to be elongated like O-Man and the ECM (7–9). Several studies have also implicated de- glycans found on α-dystroglycan (α-DG), and we recently demon- ficiency of POMT2 with E-cdh dysfunction (10–12), although di- strated that initiation of cdh/protocadherin (pcdh) O-Man glycosyl- rect evidence for a role in glycosylation of cdhs and pcdhs is ation is not dependent on the evolutionary conserved POMT1/ missing. To explore the functions of O-Man glycans on cdhs and POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, pcdhs, we previously used a combinatorial gene-targeting strategy we used a CRISPR/Cas9 genetic dissection strategy combined with in multiple cell lines and found that the two POMTs are essential sensitive and quantitative O-Man glycoproteomics to identify a ho- for glycosylation of α-DG but not cdhs, pcdhs, and IPT/TIG domain- mologous family of four putative protein O-mannosyltransferases containing proteins (13). In contrast to α-DG, we and others (6, 10, encoded by the TMTC1–4 genes, which were found to be imperative 11, 13) also found that O-Man glycans on the latter proteins were for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in not elongated, suggesting that the biosynthesis of these distinct HEK293 cells resulted in specific loss of cdh and pcdh O-Man glyco- classes of proteins were different. We therefore predicted the ex- sylation, whereas combined KO of TMTC1 and TMTC3 resulted in istence of a new type of O-Man glycosylation machinery in higher selective loss of O-Man glycans on specific β-strands of EC domains, eukaryotes (13). suggesting that each isoenzyme serves a different function. In Here, we report the discovery of a homologous family of pu- addition, O-Man glycosylation of IPT/TIG domains of plexins and tative O-Man glycosyltransferases (GTs) encoded by the four hepatocyte growth factor receptor was not affected in TMTC transmembrane and tetra-trico-peptide repeat (TPR) repeat- KO cells, suggesting the existence of yet another O-Man glyco- containing protein (TMTC) genes (TMTC1–4). The TMTC sylation machinery. Our study demonstrates that regulation of proteins were previously shown to be located in the endoplasmic + O-mannosylation in higher eukaryotes is more complex than reticulum (ER) and predicted to serve in Ca2 regulation and envisioned, and the discovery of the functions of TMTCs provide protein folding (14, 15). Moreover, biallelic mutations in TMTC3 insight into cobblestone lissencephaly caused by deficiency were reported to cause cobblestone lissencephaly (16), intellec- in TMTC3. tual disabilities, and epilepsy (17), and family linkage and asso- ciation analysis points to a role of TMTC2 in hearing loss (18). In glycoproteomics | O-glycosylation | glycosyltransferase | mass murine models, tmtc3-KO results in early neonatal death, and spectrometry | gene editing Significance rotein O-mannosylation on select Ser/Thr residues is found Pin yeast and metazoans, and the genetic and biosynthetic The large superfamily of cadherins serve essential roles basis for this type of glycosylation has long been thought to be an in cell–cell interactions and guidance. The extracellular cad- evolutionarily conserved family of protein O-mannosyltransferases herin (EC) domains responsible for the biological functions are with seven members in yeast (Pmt1-7) and two in higher eukaryotes decorated with O-linked mannose glycans, but the functions (POMT1/POMT2) (1). O-linked mannose (O-Man) glycosylation is of these O-glycans are poorly understood. Here we describe an the only type of O-glycosylation found in yeast (2, 3), and O-Man O-mannosylation pathway orchestrated by four homologous glycans are widely found on proteins trafficking the secretory path- TMTC1–4 genes that is dedicated selectively to the cadherin way, similar to O-GalNAc glycosylation in metazoans (4). In contrast, superfamily. Mutations in the TMTC3 gene cause cobblestone O-Man glycosylation in metazoans is found only on select proteins, lissencephaly, demonstrating the importance of this type of with α-dystroglycan (α-DG) being the best characterized (5–7), O-mannosylation. but, with the advent of sensitive glycoproteomics strategies, we recently found O-Man glycans on the large superfamily of cad- Author contributions: I.S.B.L., Y.N., H.J.J., H.C., and A.H. designed research; I.S.B.L., Y.N., herins (cdhs) and protocadherins (pcdhs) as well as a family of H.J.J., L. Siukstaite, and S.Y.V. performed research; L. Shapiro and B.H. contributed new reagents/analytic tools; I.S.B.L., Y.N., H.J.J., L. Siukstaite, O.J.H., J.B., K.G., L.H., L. Shapiro, CELL BIOLOGY IPT/TIG domain-carrying proteins, including the hepatocyte B.H., S.Y.V., H.C., and A.H. analyzed data; and I.S.B.L., H.C., and A.H. wrote the paper. growth factor receptor (HGFR) (6). The O-Man glycans on cdhs The authors declare no conflict of interest. β and pcdhs are found in highly conserved positions in the -strands This article is a PNAS Direct Submission. of extracellular cdh (EC) domains, and these glycosites appear 1I.S.B.L., Y.N., and H.J.J. contributed equally to this work. highly conserved in evolution, suggesting that they serve impor- 2Present address: Laboratory of Cellular and Structural Biology, The Rockefeller Univer- tant biological functions (6). sity, New York, NY 10065. Deficiencies in enzymes catalyzing the structurally complex 3To whom correspondence should be addressed. Email: [email protected]. α and diverse O-Man glycans on -DG, including the two human This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. POMT1 and POMT2 genes, underlie a subgroup of congenital 1073/pnas.1708319114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1708319114 PNAS | October 17, 2017 | vol. 114 | no. 42 | 11163–11168 Downloaded by guest on September 24, 2021 in vitro studies have demonstrated abnormal TGF-β signaling in glycans suitable for lectin weak affinity chromatography (LWAC) embryonic fibroblasts from these mice (19). enrichment of O-Man glycopeptides with the ConA lectin as well We used combinatorial gene KO targeting in HEK293 cells as O-GalNAc with the VVA lectin (6, 13, 26) (Fig. 1A). α-DG combined with differential O-Man glycoproteomics to discover contains a central mucin-like domain with O-Man glycans in the the roles of the TMTC genes in O-Man glycosylation of cdhs N-terminal region and O-GalNAc glycans in the C-terminal re- and pcdhs, and we validated this by analysis of recombinant- gion, and is therefore a useful probe for detection of substitution expressed secreted cdh construct in TMTC mutant cell lines. We present strong evidence that the TMTC genes encode dis- tinct O-Man GTs that cooperatively glycosylate distinct regions in the EC domains of cdhs and pcdhs. We also present evidence that the TMTCs do not glycosylate the IPT/TIG domain-containing A Genetic Deconstruction Quantitative Glycoproteomics proteins, and therefore we predict the existence of yet another Dimethyl KO independent undiscovered O-Man glycosylation pathway dedicated to IPT/TIG KO labeling COSMC SC domains. The severe phenotype associated with deficiency of Mix POMGNT1 POMT1/2 TMTC3 (16, 17) indicates that O-Man glycans on the cdh super- KO KO/SC 1:1 family serve important biological functions. TMTC1,3 KO dependent HEK293WT HEK293SC KO ConA LWAC Results Gal GlcNAc TMTC1,2,3,4 KO LC-MS/MS Bioinformatic Identification of the TMTC1–4 Genes. Our finding that Man GalNAc NeuAc the POMT1/2 genes were dispensable for O-mannosylation of many proteins (13) prompted a search for additional enzymes. B Cdhs CDH11 We first tested the possibility that candidate enzyme(s) re- CDH13 sponsible for cdh/pcdh O-mannosylation were already classified as GTs in the Carbohydrate-Active enZYmes (CAZy) database, albeit Pcdhs without known function, and KO of six such genes in combinations IPT/TIG predicted to cover potential redundant isoenzymes in individual GT families did not affect O-mannosylation (GLT1D1/GTDC1, POMT1/2 GLT8D1/GLT8D2, and KDELC1/KDELC2; not shown). We substrates next hypothesized that the candidate enzyme(s) would resem- ble existing protein mannosyltransferases in CAZy GT39 and Others GT98 families with respect to overall multitransmembrane do- 0.1 1 10 100 1000 10000 100000 main structure but without significant sequence similarity. We Fold change (O-Man glycosylation) performed a broad search considering criteria common for Pmts/ C POMTs and the DPY19L genes responsible for C-mannosylation, including ER localization, general topology, and domain structure Cdhs features.
Recommended publications
  • Broad and Thematic Remodeling of the Surface Glycoproteome on Isogenic
    bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Broad and thematic remodeling of the surface glycoproteome on isogenic cells transformed with driving proliferative oncogenes Kevin K. Leung1,5, Gary M. Wilson2,5, Lisa L. Kirkemo1, Nicholas M. Riley2,4, Joshua J. Coon2,3, James A. Wells1* 1Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA Departments of Chemistry2 and Biomolecular Chemistry3, University of Wisconsin- Madison, Madison, WI, 53706, USA 4Present address Department of Chemistry, Stanford University, Stanford, CA, 94305, USA 5These authors contributed equally *To whom correspondence should be addressed bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here We apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK and AKT.
    [Show full text]
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • A Novel Pseudomonas Geniculata AGE Family Epimerase/Isomerase and Its Application in D-Mannose Synthesis
    foods Article A Novel Pseudomonas geniculata AGE Family Epimerase/Isomerase and Its Application in d-Mannose Synthesis Zhanzhi Liu 1,2, Ying Li 1,2, Jing Wu 1,2 and Sheng Chen 1,2,* 1 State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; [email protected] (Z.L.); [email protected] (Y.L.); [email protected] (J.W.) 2 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China * Correspondence: [email protected] Received: 29 September 2020; Accepted: 3 December 2020; Published: 6 December 2020 Abstract: d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 ◦C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 8.5 mM, 476.3 4.0 s 1, and 9.7 0.5 s 1 mM 1, respectively. ± ± − ± − · − The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P.
    [Show full text]
  • Viruses Like Sugars: How to Assess Glycan Involvement in Viral Attachment
    microorganisms Review Viruses Like Sugars: How to Assess Glycan Involvement in Viral Attachment Gregory Mathez and Valeria Cagno * Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; [email protected] * Correspondence: [email protected] Abstract: The first step of viral infection requires interaction with the host cell. Before finding the specific receptor that triggers entry, the majority of viruses interact with the glycocalyx. Identifying the carbohydrates that are specifically recognized by different viruses is important both for assessing the cellular tropism and for identifying new antiviral targets. Advances in the tools available for studying glycan–protein interactions have made it possible to identify them more rapidly; however, it is important to recognize the limitations of these methods in order to draw relevant conclusions. Here, we review different techniques: genetic screening, glycan arrays, enzymatic and pharmacological approaches, and surface plasmon resonance. We then detail the glycan interactions of enterovirus D68 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting the aspects that need further clarification. Keywords: attachment receptor; viruses; glycan; sialic acid; heparan sulfate; HBGA; SARS-CoV-2; EV-D68 Citation: Mathez, G.; Cagno, V. Viruses Like Sugars: How to Assess 1. Introduction Glycan Involvement in Viral This review focuses on methods for assessing the involvement of carbohydrates in Attachment. Microorganisms 2021, 9, viral attachment and entry into the host cell. Viruses often bind to entry receptors that are 1238. https://doi.org/10.3390/ not abundant on the cell surface; to increase their chances of finding them, they initially microorganisms9061238 bind to attachment receptors comprising carbohydrates that are more widely expressed.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Prenatal Testing Requisition Form
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 PRENATAL COMPREHENSIVE REQUISITION FORM PATIENT INFORMATION NAME (LAST,FIRST, MI): DATE OF BIRTH (MM/DD/YY): HOSPITAL#: ACCESSION#: REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: SAMPLE INFORMATION CLINICAL INDICATION FETAL SPECIMEN TYPE Pregnancy at risk for specific genetic disorder DATE OF COLLECTION: (Complete FAMILIAL MUTATION information below) Amniotic Fluid: cc AMA PERFORMING PHYSICIAN: CVS: mg TA TC Abnormal Maternal Screen: Fetal Blood: cc GESTATIONAL AGE (GA) Calculation for AF-AFP* NTD TRI 21 TRI 18 Other: SELECT ONLY ONE: Abnormal NIPT (attach report): POC/Fetal Tissue, Type: TRI 21 TRI 13 TRI 18 Other: Cultured Amniocytes U/S DATE (MM/DD/YY): Abnormal U/S (SPECIFY): Cultured CVS GA ON U/S DATE: WKS DAYS PARENTAL BLOODS - REQUIRED FOR CMA -OR- Maternal Blood Date of Collection: Multiple Pregnancy Losses LMP DATE (MM/DD/YY): Parental Concern Paternal Blood Date of Collection: Other Indication (DETAIL AND ATTACH REPORT): *Important: U/S dating will be used if no selection is made. Name: Note: Results will differ depending on method checked. Last Name First Name U/S dating increases overall screening performance. Date of Birth: KNOWN FAMILIAL MUTATION/DISORDER SPECIFIC PRENATAL TESTING Notice: Prior to ordering testing for any of the disorders listed, you must call the lab and discuss the clinical history and sample requirements with a genetic counselor.
    [Show full text]
  • Myo-Glyco Disease Biology: Genetic Myopathies Caused by Abnormal Glycan Synthesis and Degradation
    Journal of Neuromuscular Diseases 6 (2019) 175–187 175 DOI 10.3233/JND-180369 IOS Press Review Myo-Glyco disease Biology: Genetic Myopathies Caused by Abnormal Glycan Synthesis and Degradation Motoi Kanagawa∗ Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Japan Abstract. Glycosylation is a major form of post-translational modification and plays various important roles in organisms by modifying proteins or lipids, which generates functional variability and can increase their stability. Because of the physiological importance of glycosylation, defects in genes encoding proteins involved in glycosylation or glycan degradation are sometimes associated with human diseases. A number of genetic neuromuscular diseases are caused by abnormal glycan modification or degeneration. Heterogeneous and complex modification machinery, and difficulties in structural and functional analysis of glycans have impeded the understanding of how glycosylation contributes to pathology. However, recent rapid advances in glycan and genetic analyses, as well as accumulating genetic and clinical information have greatly contributed to identifying glycan structures and modification enzymes, which has led to breakthroughs in the understanding of the molecular pathogenesis of various diseases and the possible development of therapeutic strategies. For example, studies on the relationship between glycosylation and muscular dystrophy in the last two decades have significantly impacted the fields of glycobiology and neuromyology. In this review, the basis of glycan structure and biosynthesis will be briefly explained, and then molecular pathogenesis and therapeutic concepts related to neuromuscular diseases will be introduced from the point of view of the life cycle of a glycan molecule. Keywords: Glycosylation, muscular dystrophy, neuromuscular disease, therapeutic strategy STRUCTURE AND CELL BIOLOGY OF of a glycoconjugate, such as a glycoprotein and GLYCANS – AN OVERVIEW glycolipid.
    [Show full text]
  • Orlistat, a Novel Potent Antitumor Agent for Ovarian Cancer: Proteomic Analysis of Ovarian Cancer Cells Treated with Orlistat
    INTERNATIONAL JOURNAL OF ONCOLOGY 41: 523-532, 2012 Orlistat, a novel potent antitumor agent for ovarian cancer: proteomic analysis of ovarian cancer cells treated with Orlistat HUI-QIONG HUANG1*, JING TANG1*, SHENG-TAO ZHOU1, TAO YI1, HONG-LING PENG1, GUO-BO SHEN2, NA XIE2, KAI HUANG2, TAO YANG2, JIN-HUA WU2, CAN-HUA HUANG2, YU-QUAN WEI2 and XIA ZHAO1,2 1Gynecological Oncology of Biotherapy Laboratory, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan; 2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China Received February 9, 2012; Accepted March 19, 2012 DOI: 10.3892/ijo.2012.1465 Abstract. Orlistat is an orally administered anti-obesity drug larly PKM2. These changes confirmed our hypothesis that that has shown significant antitumor activity in a variety of Orlistat is a potential inhibitor of ovarian cancer and can be tumor cells. To identify the proteins involved in its antitumor used as a novel adjuvant antitumor agent. activity, we employed a proteomic approach to reveal protein expression changes in the human ovarian cancer cell line Introduction SKOV3, following Orlistat treatment. Protein expression profiles were analyzed by 2-dimensional polyacrylamide In the 1920s, the Nobel Prize winner Otto Warburg observed gel electrophoresis (2-DE) and protein identification was a marked increase in glycolysis and enhanced lactate produc- performed on a MALDI-Q-TOF MS/MS instrument. More tion in tumor cells even when maintained in conditions of high than 110 differentially expressed proteins were visualized oxygen tension (termed Warburg effect), leading to widespread by 2-DE and Coomassie brilliant blue staining.
    [Show full text]
  • WO 2017/054086 Al 6 April 2017 (06.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/054086 Al 6 April 2017 (06.04.2017) P O P C T (51) International Patent Classification: (74) Agent: TANDAN, Susan; Gowling WLG (Canada) LLP, C12N 5/ 0 (2006.01) C07K 14/47 (2006.01) One Main Street West, Hamilton, Ontario L8P 4Z5 (CA). A61K 31/7088 (2006.01) C07K 14/705 (2006.01) (81) Designated States (unless otherwise indicated, for every A61K 38/46 (2006.01) C07K 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 48/00 (2006.01) C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 9/00 (2006.01) C12N 15/62 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61P 21/00 (2006.01) C12N 15/85 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61P 3/00 (2006.01) C12N 15/87 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/CA201 6/05 1141 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 30 September 2016 (30.09.201 6) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW.
    [Show full text]
  • B3GALNT2 Is a Gene Associated with Congenital Muscular Dystrophy with Brain Malformations
    European Journal of Human Genetics (2014) 22, 707–710 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations Carola Hedberg*,1, Anders Oldfors1 and Niklas Darin2 Congenital muscular dystrophies associated with brain malformations are a group of disorders frequently associated with aberrant glycosylation of a-dystroglycan. They include disease entities such a Walker–Warburg syndrome, muscle–eye–brain disease and various other clinical phenotypes. Different genes involved in glycosylation of a-dystroglycan are associated with these dystroglycanopathies. We describe a 5-year-old girl with psychomotor retardation, ataxia, spasticity, muscle weakness and increased serum creatine kinase levels. Immunhistochemistry of skeletal muscle revealed reduced glycosylated a-dystroglycan. Magnetic resonance imaging of the brain at 3.5 years of age showed increased T2 signal from supratentorial and infratentorial white matter, a hypoplastic pons and subcortical cerebellar cysts. By whole exome sequencing, the patient was identified to be compound heterozygous for a one-base duplication and a missense mutation in the gene B3GALNT2 (b-1,3-N-acetylgalactos- aminyltransferase 2; B3GalNAc-T2). This patient showed a milder phenotype than previously described patients with mutations in the B3GALNT2 gene. European Journal of Human Genetics (2014) 22, 707–710; doi:10.1038/ejhg.2013.223; published online 2 October 2013 Keywords:
    [Show full text]
  • Influenza-Specific Effector Memory B Cells Predict Long-Lived Antibody Responses to Vaccination in Humans
    bioRxiv preprint doi: https://doi.org/10.1101/643973; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Influenza-specific effector memory B cells predict long-lived antibody responses to vaccination in humans Anoma Nellore1, Esther Zumaquero2, Christopher D. Scharer3, Rodney G. King2, Christopher M. Tipton4, Christopher F. Fucile5, Tian Mi3, Betty Mousseau2, John E. Bradley6, Fen Zhou2, Paul A. Goepfert1, Jeremy M. Boss3, Troy D. Randall6, Ignacio Sanz4, Alexander F. Rosenberg2,5, Frances E. Lund2 1Dept. of Medicine, Division of Infectious Disease, 2Dept of Microbiology, 5Informatics Institute, 6Dept. of Medicine, Division of Clinical Immunology and Rheumatology and at The University of Alabama at Birmingham, Birmingham, AL 35294 USA 3Dept. of Microbiology and Immunology and 4Department of Medicine, Division of Rheumatology Emory University, Atlanta, GA 30322, USA Correspondence should be addressed to: Frances E. Lund, PhD Charles H. McCauley Professor and Chair Dept of Microbiology University of Alabama at Birmingham 276 BBRB Box 11 1720 2nd Avenue South Birmingham AL 35294-2170 [email protected] SHORT RUNNING TITLE: Effector memory B cell development after influenza vaccination 1 bioRxiv preprint doi: https://doi.org/10.1101/643973; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Seasonal influenza vaccination elicits hemagglutinin (HA)-specific CD27+ memory B cells (Bmem) that differ in expression of T-bet, BACH2 and TCF7.
    [Show full text]