3 Fourier Series

Total Page:16

File Type:pdf, Size:1020Kb

3 Fourier Series 3 Fourier Series 3.1 Introduction Although it was not apparent in the early historical development of the method of separation of variables, what we are about to do is the analog for function spaces of the following basic observation, which explains why the standard basis i = e1, j = e2, and k = e3, in 3-space is so useful. The basis vectors are an orthonormal set of vectors, which means e1 e2 =0, e1 e3 =0, e2 e3 =0, · · · e1 e1 =1, e2 e2 =1, e3 e3 =1. · · · Any vector v in 3-space, has a unique representation as v = b1e1 + b2e2+b3e3. Furthermore, the coefficients b1,b2, and b3 are easily computed from v : b1 = v e1,b2 = v e2,b3 = v e3. · · · Just as was the case for the laterally insulated heat-conducting rod and for the small transverse vibrations of a string, whenever the method of separation of variables is used to solve an IBVP, you reach a point where certain data given by a function f (x) must be expanded in a series of one of the following forms in which L>0: ∞ nπx f (x)= b sin , n L n=1 FourierX Sine Series Expansion a ∞ nπx f (x)= 0 + a cos , 2 n L n=1 Fourier CosineX Series Expansion a ∞ nπx nπx f (x)= 0 + a cos + b sin , 2 n L n L n=1 XFourier³ Series Expansion ´ or, more generally, ∞ f (x)= fnϕn (x) n=1 EigenfunctionX Expansion where ϕn (x) are the eigenfunctions of an EVP that arises in the separation of variables process. 18 Just for the record the Fourier sine and cosine series and the general Fourier series expansions arise from the EVPs X00 λX =0, X (0) =− 0,X(L)=0, ½ X00 λX =0, − X0 (0) = 0,X0 (L)=0, ½ X00 λX =0, − . X (0) = X (2L) ,X0 (0) = X0 (2L) ½ In the context of heat conduction in a laterally insulated homogeneous rod, the first EVP comes up when the rod’s ends are held at temperature zero; the second when the ends of the rod are insulated; and the third when the rod is bent into a heat ring (doughnut) whose central circle has circumference 2L. To set the stage for how to proceed with the study of Fourier series and more general eigenfunction expansions, let’s review the corresponding situation for Taylor series and Taylor series expansions. Let f (x) be a function with infinitely many derivatives on an interval containing x =0. Suppose we suspect that f (x) hasapowerseriesexpansion,say, ∞ n f (x)= fnx on some interval I containing 0. n=0 X Then term-by-term differentiation of the power series shows that f (n) (0) f = . n n! Now, suppose we do not know that f (x) hasapowerseriesexpansion,butwe hope that it does. It is natural to form the infinite series ∞ f (n) (0) xn n! n=0 X Taylor series of f about 0 and to try and prove that this series| converges{z } at least for x near 0 and has sum f (x) . If all this works out we have obtained a power series expansion for f (x) . So there are two basic questions: TS 1. For which x (if any) does the Taylor series of f (x) converge? TS 2. For which x (if any) is f (x) the sum of its Taylor series? When f (x) is the sum of its Taylor series over some interval we call ∞ f (n) (0) f (x)= xn the Taylor series expansion of f about 0. n! n=0 X 19 3.2 Fourier Series Evidently, Fourier sine and cosine series can be regarded as special cases of a general Fourier series so we will discuss Fourier series first and specialize the results to get information about Fourier sine and cosine series. We start by inquiring whether a rather general function f (x) has a series expansion of the form a ∞ nπx nπx f (x)= 0 + a cos + b sin , 2 n L n L n=1 X ³ ´ over some interval, say the full real line. If so, the coefficients an and bn must depend on the function f (x) in some way. A formal calculation, based on orthogonality relations satisfied by cos (nπx/L) and sin (nπx/L) , leads to 1 L nπx an = f (x)cos dx, L L L Z− 1 L nπx bn = f (x)sin dx. L L L Z− We call an and bn the Fourier coefficients of f (x) . The trigonometric series formed using the Fourier coefficients, a ∞ nπx nπx 0 + a cos + b sin , 2 n L n L n=1 X ³ ´ is called the Fourier series of f (x) . The notation a ∞ nπx nπx f (x) 0 + a cos + b sin 2 n L n L ∼ n=1 X ³ ´ means that the series on the right is the Fourier series of f (x) . Thesametwo questions posed for Taylor series are relevant for Fourier series: FS 1. For which x (if any) does the Fourier series of f (x) converge? FS 2. For which x (if any) is f (x) the sum of its Fourier series? When f (x) is the sum of its Fourier series on some interval, we call a ∞ nπx nπx f (x)= 0 + a cos + b sin 2 n L n L n=1 X ³ ´ the Fourier series expansion of f (x) on that interval. Evidently an understanding of Fourier series involves some familiarity with properties of periodic functions. 20 3.3 Elementary Properties of Periodic Functions All functions in this section are real-valued and defined on the real line. Let p =0. Afunctionf (x) is periodic with period p (p periodic for short or just periodic6 if the period is understood) if f (x + p)=f (x) for all x in its domain. Fact 1. If f (x) is p periodic, then f (x) is np periodic for every integer n =0; that is, every nonzero integer multiple± of a period is a period. 6 Fact 2. If f (x) and g (x) are p periodic, then αf (x)+βg (x) is p periodic for all scalars α and β; that is, the p periodic functions are a function space. Fact 3. Every nonconstant, continuous p periodic function has a smallest pos- itive period, called its fundamental period (or primitive period). Every period of the function is an integer multiple of the fundamental period. Fact 4. If f (x) is p periodic and integrable over [0,p] , then it is integrable over any interval [a, b] of length p and b p f (x) dx = f (x) dx. Za Z0 Fact 5. Any property of a p periodic function can be recast as an equivalent property of a 2π periodic function and conversely because p f (x) is p periodic g (x)=f x is 2π periodic. ⇐⇒ 2π ³ ´ Consequently, theoretical results about Fourier series are often established in the 2π periodic case. The corresponding result for any other period follows free of charge from the foregoing equivalence (change of variable). 3.4 Even and Odd Functions All functions in this section are real-valued and defined on a subset of the real line. A function f is even if its graph is symmetric with respect to the y-axis; equivalently, f is even iff f ( x)=f (x) for all x in the domain of f. − A function f is odd if its graph is symmetric with respect to the origin; equiv- alently, f is odd iff f ( x)= f (x) for all x in the domain of f. − − This terminology is used because even and odd functions share some (not all) algebraic properties of even and odd numbers: For functions Even (Even)(Even)=Even, = Even, Even Odd (Odd)(Odd)=Even, = Even, Odd (Even) (Even)=Even, (Odd) (Odd)=Odd, ± ± 21 What can you say about (Even) (Odd)? ± Fact 1. Most functions are neither even nor odd. Fact 2. Every function defined on a symmetric interval about the origin is the sum of an even and an odd function. Fact 3. Properties of even and odd functions are especially useful in evaluating certain integrals over intervals symmetric about the origin: L L f even = f (x) dx =2 f (x) dx, ⇒ L 0 Z− Z L f odd = f (x) dx =0. ⇒ L Z− Fact 4. The Fourier series of an even 2L periodic function is a cosine series. Fact 5. The Fourier series of an odd 2L periodic function is a sine series. 3.5 Fourier Sine and Cosine Series in Action In a number of situations in which separation of variables is used to solve an IBVP, you reach a situation where you need to expand a given function f (x) defined only for 0 x L into either a Fourier sine series or a Fourier cosine series. This is easy≤ to do≤ if you remember Facts 4 and 5 in Sec. 3.4. If you need a cosine series, just extend the given function f (x) to an even function on L x L by defining f (x)=f ( x) for L x 0 and then make the extended− ≤ function≤ 2L periodic by requiring− that− f≤(x +2≤ L)=f (x) for all x. The extended function will be an even periodic function and, hence, its Fourier series will be a Fourier cosine series; you just use that series on 0 x L. ≤ ≤ (Picky point: The even extension of f to L x L is a new function as is the 2L periodic extension of the even extension− ≤ of ≤f; nevertheless, being sane, we denote all three of these functions by f.
Recommended publications
  • Solutions to HW Due on Feb 13
    Math 432 - Real Analysis II Solutions to Homework due February 13 In class, we learned that the n-th remainder for a smooth function f(x) defined on some open interval containing 0 is given by n−1 X f (k)(0) R (x) = f(x) − xk: n k! k=0 Taylor's Theorem gives a very helpful expression of this remainder. It says that for some c between 0 and x, f (n)(c) R (x) = xn: n n! A function is called analytic on a set S if 1 X f (k)(0) f(x) = xk k! k=0 for all x 2 S. In other words, f is analytic on S if and only if limn!1 Rn(x) = 0 for all x 2 S. Question 1. Use Taylor's Theorem to prove that all polynomials are analytic on all R by showing that Rn(x) ! 0 for all x 2 R. Solution 1. Let f(x) be a polynomial of degree m. Then, for all k > m derivatives, f (k)(x) is the constant 0 function. Thus, for any x 2 R, Rn(x) ! 0. So, the polynomial f is analytic on all R. x Question 2. Use Taylor's Theorem to prove that e is analytic on all R. by showing that Rn(x) ! 0 for all x 2 R. Solution 2. Note that f (k)(x) = ex for all k. Fix an x 2 R. Then, by Taylor's Theorem, ecxn R (x) = n n! for some c between 0 and x. We now proceed with two cases.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Even and Odd Functions Fourier Series Take on Simpler Forms for Even and Odd Functions Even Function a Function Is Even If for All X
    04-Oct-17 Even and Odd functions Fourier series take on simpler forms for Even and Odd functions Even function A function is Even if for all x. The graph of an even function is symmetric about the y-axis. In this case Examples: 4 October 2017 MATH2065 Introduction to PDEs 2 1 04-Oct-17 Even and Odd functions Odd function A function is Odd if for all x. The graph of an odd function is skew-symmetric about the y-axis. In this case Examples: 4 October 2017 MATH2065 Introduction to PDEs 3 Even and Odd functions Most functions are neither odd nor even E.g. EVEN EVEN = EVEN (+ + = +) ODD ODD = EVEN (- - = +) ODD EVEN = ODD (- + = -) 4 October 2017 MATH2065 Introduction to PDEs 4 2 04-Oct-17 Even and Odd functions Any function can be written as the sum of an even plus an odd function where Even Odd Example: 4 October 2017 MATH2065 Introduction to PDEs 5 Fourier series of an EVEN periodic function Let be even with period , then 4 October 2017 MATH2065 Introduction to PDEs 6 3 04-Oct-17 Fourier series of an EVEN periodic function Thus the Fourier series of the even function is: This is called: Half-range Fourier cosine series 4 October 2017 MATH2065 Introduction to PDEs 7 Fourier series of an ODD periodic function Let be odd with period , then This is called: Half-range Fourier sine series 4 October 2017 MATH2065 Introduction to PDEs 8 4 04-Oct-17 Odd and Even Extensions Recall the temperature problem with the heat equation.
    [Show full text]
  • Further Analysis on Classifications of PDE(S) with Variable Coefficients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters 23 (2010) 966–970 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Further analysis on classifications of PDE(s) with variable coefficients A. Kılıçman a,∗, H. Eltayeb b, R.R. Ashurov c a Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia b Mathematics Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia c Institute of Advance Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia article info a b s t r a c t Article history: In this study we consider further analysis on the classification problem of linear second Received 1 April 2009 order partial differential equations with non-constant coefficients. The equations are Accepted 13 April 2010 produced by using convolution with odd or even functions. It is shown that the patent of classification of new equations is similar to the classification of the original equations. Keywords: ' 2010 Elsevier Ltd. All rights reserved. Even and odd functions Double convolution Classification 1. Introduction The subject of partial differential equations (PDE's) has a long history and a wide range of applications. Some second- order linear partial differential equations can be classified as parabolic, hyperbolic or elliptic in order to have a guide to appropriate initial and boundary conditions, as well as to the smoothness of the solutions. If a PDE has coefficients which are not constant, it is possible that it is of mixed type.
    [Show full text]
  • Student Understanding of Taylor Series Expansions in Statistical Mechanics
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020110 (2013) Student understanding of Taylor series expansions in statistical mechanics Trevor I. Smith,1 John R. Thompson,2,3 and Donald B. Mountcastle2 1Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA 2Department of Physics and Astronomy, University of Maine, Orono, Maine 04469, USA 3Maine Center for Research in STEM Education, University of Maine, Orono, Maine 04469, USA (Received 2 March 2012; revised manuscript received 23 May 2013; published 8 August 2013) One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses. DOI: 10.1103/PhysRevSTPER.9.020110 PACS numbers: 01.40.Fk, 05.20.Ày, 02.30.Lt, 02.30.Mv students’ use of Taylor series expansion to derive and I. INTRODUCTION understand the Boltzmann factor as a component of proba- Over the past several decades, much work has been done bility in the canonical ensemble. While this is a narrow investigating ways in which students understand and learn topic, we feel that it serves as an excellent example of physics (see Refs.
    [Show full text]
  • Nonlinear Optics
    Nonlinear Optics: A very brief introduction to the phenomena Paul Tandy ADVANCED OPTICS (PHYS 545), Spring 2010 Dr. Mendes INTRO So far we have considered only the case where the polarization density is proportionate to the electric field. The electric field itself is generally supplied by a laser source. PE= ε0 χ Where P is the polarization density, E is the electric field, χ is the susceptibility, and ε 0 is the permittivity of free space. We can imagine that the electric field somehow induces a polarization in the material. As the field increases the polarization also in turn increases. But we can also imagine that this process does not continue indefinitely. As the field grows to be very large the field itself starts to become on the order of the electric fields between the atoms in the material (medium). As this occurs the material itself becomes slightly altered and the behavior is no longer linear in nature but instead starts to become weakly nonlinear. We can represent this as a Taylor series expansion model in the electric field. ∞ n 23 PAEAEAEAE==++∑ n 12 3+... n=1 This model has become so popular that the coefficient scaling has become standardized using the letters d and χ (3) as parameters corresponding the quadratic and cubic terms. Higher order terms would play a role too if the fields were extremely high. 2(3)3 PEdEE=++()εχ0 (2) ( 4χ ) + ... To get an idea of how large a typical field would have to be before we see a nonlinear effect, let us scale the above equation by the first order term.
    [Show full text]
  • Fundamentals of Duct Acoustics
    Fundamentals of Duct Acoustics Sjoerd W. Rienstra Technische Universiteit Eindhoven 16 November 2015 Contents 1 Introduction 3 2 General Formulation 4 3 The Equations 8 3.1 AHierarchyofEquations ........................... 8 3.2 BoundaryConditions. Impedance.. 13 3.3 Non-dimensionalisation . 15 4 Uniform Medium, No Mean Flow 16 4.1 Hard-walled Cylindrical Ducts . 16 4.2 RectangularDucts ............................... 21 4.3 SoftWallModes ................................ 21 4.4 AttenuationofSound.............................. 24 5 Uniform Medium with Mean Flow 26 5.1 Hard-walled Cylindrical Ducts . 26 5.2 SoftWallandUniformMeanFlow . 29 6 Source Expansion 32 6.1 ModalAmplitudes ............................... 32 6.2 RotatingFan .................................. 32 6.3 Tyler and Sofrin Rule for Rotor-Stator Interaction . ..... 33 6.4 PointSourceinaLinedFlowDuct . 35 6.5 PointSourceinaDuctWall .......................... 38 7 Reflection and Transmission 40 7.1 A Discontinuity in Diameter . 40 7.2 OpenEndReflection .............................. 43 VKI - 1 - CONTENTS CONTENTS A Appendix 49 A.1 BesselFunctions ................................ 49 A.2 AnImportantComplexSquareRoot . 51 A.3 Myers’EnergyCorollary ............................ 52 VKI - 2 - 1. INTRODUCTION CONTENTS 1 Introduction In a duct of constant cross section, with a medium and boundary conditions independent of the axial position, the wave equation for time-harmonic perturbations may be solved by means of a series expansion in a particular family of self-similar solutions, called modes. They are related to the eigensolutions of a two-dimensional operator, that results from the wave equation, on a cross section of the duct. For the common situation of a uniform medium without flow, this operator is the well-known Laplace operator 2. For a non- uniform medium, and in particular with mean flow, the details become mo∇re complicated, but the concept of duct modes remains by and large the same1.
    [Show full text]
  • Fourier Series
    Chapter 10 Fourier Series 10.1 Periodic Functions and Orthogonality Relations The differential equation ′′ y + 2y = F cos !t models a mass-spring system with natural frequency with a pure cosine forcing function of frequency !. If 2 = !2 a particular solution is easily found by undetermined coefficients (or by∕ using Laplace transforms) to be F y = cos !t. p 2 !2 − If the forcing function is a linear combination of simple cosine functions, so that the differential equation is N ′′ 2 y + y = Fn cos !nt n=1 X 2 2 where = !n for any n, then, by linearity, a particular solution is obtained as a sum ∕ N F y (t)= n cos ! t. p 2 !2 n n=1 n X − This simple procedure can be extended to any function that can be repre- sented as a sum of cosine (and sine) functions, even if that summation is not a finite sum. It turns out that the functions that can be represented as sums in this form are very general, and include most of the periodic functions that are usually encountered in applications. 723 724 10 Fourier Series Periodic Functions A function f is said to be periodic with period p> 0 if f(t + p)= f(t) for all t in the domain of f. This means that the graph of f repeats in successive intervals of length p, as can be seen in the graph in Figure 10.1. y p 2p 3p 4p 5p Fig. 10.1 An example of a periodic function with period p.
    [Show full text]
  • The Impulse Response and Convolution
    The Impulse Response and Convolution Colophon An annotatable worksheet for this presentation is available as Worksheet 8. The source code for this page is laplace_transform/5/convolution.ipynb. You can view the notes for this presentation as a webpage (HTML). This page is downloadable as a PDF file. Scope and Background Reading This section is an introduction to the impulse response of a system and time convolution. Together, these can be used to determine a Linear Time Invariant (LTI) system's time response to any signal. As we shall see, in the determination of a system's response to a signal input, time convolution involves integration by parts and is a tricky operation. But time convolution becomes multiplication in the Laplace Transform domain, and is much easier to apply. The material in this presentation and notes is based on Chapter 6 of Karris{cite} karris . Agenda The material to be presented is: Even and Odd Functions of Time Time Convolution Graphical Evaluation of the Convolution Integral System Response by Laplace Even and Odd Functions of Time (This should be revision!) We need to be reminded of even and odd functions so that we can develop the idea of time convolution which is a means of determining the time response of any system for which we know its impulse response to any signal. The development requires us to find out if the Dirac delta function (�(�)) is an even or an odd function of time. Even Functions of Time A function �(�) is said to be an even function of time if the following relation holds �(−�) = �(�) that is, if we relace � with −� the function �(�) does not change.
    [Show full text]
  • 2.161 Signal Processing: Continuous and Discrete Fall 2008
    MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Institute of Technology Department of Mechanical Engineering 2.161 Signal Processing - Continuous and Discrete Fall Term 2008 1 Lecture 4 Reading: ² 1 Review of Development of Fourier Transform: We saw in Lecture 3 that the Fourier transform representation of aperiodic waveforms can be expressed as the limiting behavior of the Fourier series as the period of a periodic extension is allowed to become very large, giving the Fourier transform pair Z 1 ¡j­t X(jΩ) = x(t)e dt (1) ¡1 Z 1 1 j­t x(t) = X(jΩ)e dΩ (2) 2¼ ¡1 Equation (??) is known as the forward Fourier transform, and is analogous to the analysis equation of the Fourier series representation. It expresses the time-domain function x(t) as a function of frequency, but unlike the Fourier series representation it is a continuous function of frequency. Whereas the Fourier series coefficients have units of amplitude, for example volts or Newtons, the function X(jΩ) has units of amplitude density, that is the total “amplitude” contained within a small increment of frequency is X(jΩ)±Ω=2¼. Equation (??) defines the inverse Fourier transform. It allows the computation of the time-domain function from the frequency domain representation X(jΩ), and is therefore analogous to the Fourier series synthesis equation. Each of the two functions x(t) or X(jΩ) is a complete description of the function and the pair allows the transformation between the domains.
    [Show full text]
  • Graduate Macro Theory II: Notes on Log-Linearization
    Graduate Macro Theory II: Notes on Log-Linearization Eric Sims University of Notre Dame Spring 2017 The solutions to many discrete time dynamic economic problems take the form of a system of non-linear difference equations. There generally exists no closed-form solution for such problems. As such, we must result to numerical and/or approximation techniques. One particularly easy and very common approximation technique is that of log linearization. We first take natural logs of the system of non-linear difference equations. We then linearize the logged difference equations about a particular point (usually a steady state), and simplify until we have a system of linear difference equations where the variables of interest are percentage deviations about a point (again, usually a steady state). Linearization is nice because we know how to work with linear difference equations. Putting things in percentage terms (that's the \log" part) is nice because it provides natural interpretations of the units (i.e. everything is in percentage terms). First consider some arbitrary univariate function, f(x). Taylor's theorem tells us that this can be expressed as a power series about a particular point x∗, where x∗ belongs to the set of possible x values: f 0(x∗) f 00 (x∗) f (3)(x∗) f(x) = f(x∗) + (x − x∗) + (x − x∗)2 + (x − x∗)3 + ::: 1! 2! 3! Here f 0(x∗) is the first derivative of f with respect to x evaluated at the point x∗, f 00 (x∗) is the second derivative evaluated at the same point, f (3) is the third derivative, and so on.
    [Show full text]
  • Approximation of a Function by a Polynomial Function
    1 Approximation of a function by a polynomial function 1. step: Assuming that f(x) is differentiable at x = a, from the picture we see: 푓(푥) = 푓(푎) + ∆푓 ≈ 푓(푎) + 푓′(푎)∆푥 Linear approximation of f(x) at point x around x = a 푓(푥) = 푓(푎) + 푓′(푎)(푥 − 푎) 푅푒푚푎푛푑푒푟 푹 = 푓(푥) − 푓(푎) − 푓′(푎)(푥 − 푎) will determine magnitude of error Let’s try to get better approximation of f(x). Let’s assume that f(x) has all derivatives at x = a. Let’s assume there is a possible power series expansion of f(x) around a. ∞ 2 3 푛 푓(푥) = 푐0 + 푐1(푥 − 푎) + 푐2(푥 − 푎) + 푐3(푥 − 푎) + ⋯ = ∑ 푐푛(푥 − 푎) ∀ 푥 푎푟표푢푛푑 푎 푛=0 n 푓(푛)(푥) 푓(푛)(푎) 2 3 0 푓 (푥) = 푐0 + 푐1(푥 − 푎) + 푐2(푥 − 푎) + 푐3(푥 − 푎) + ⋯ 푓(푎) = 푐0 2 1 푓′(푥) = 푐1 + 2푐2(푥 − 푎) + 3푐3(푥 − 푎) + ⋯ 푓′(푎) = 푐1 2 2 푓′′(푥) = 2푐2 + 3 ∙ 2푐3(푥 − 푎) + 4 ∙ 3(푥 − 푎) ∙∙∙ 푓′′(푎) = 2푐2 2 3 푓′′′(푥) = 3 ∙ 2푐3 + 4 ∙ 3 ∙ 2(푥 − 푎) + 5 ∙ 4 ∙ 3(푥 − 푎) ∙∙∙ 푓′′′(푎) = 3 ∙ 2푐3 ⋮ (푛) (푛) n 푓 (푥) = 푛(푛 − 1) ∙∙∙ 3 ∙ 2 ∙ 1푐푛 + (푛 + 1)푛(푛 − 1) ⋯ 2푐푛+1(푥 − 푎) 푓 (푎) = 푛! 푐푛 ⋮ Taylor’s theorem If f (x) has derivatives of all orders in an open interval I containing a, then for each x in I, ∞ 푓(푛)(푎) 푓(푛)(푎) 푓(푛+1)(푎) 푓(푥) = ∑ (푥 − 푎)푛 = 푓(푎) + 푓′(푎)(푥 − 푎) + ⋯ + (푥 − 푎)푛 + (푥 − 푎)푛+1 + ⋯ 푛! 푛! (푛 + 1)! 푛=0 푛 ∞ 푓(푘)(푎) 푓(푘)(푎) = ∑ (푥 − 푎)푘 + ∑ (푥 − 푎)푘 푘! 푘! 푘=0 푘=푛+1 convention for the sake of algebra: 0! = 1 = 푇푛 + 푅푛 푛 푓(푘)(푎) 푇 = ∑ (푥 − 푎)푘 푝표푙푦푛표푚푎푙 표푓 푛푡ℎ 표푟푑푒푟 푛 푘! 푘=0 푓(푛+1)(푧) 푛+1 푅푛(푥) = (푥 − 푎) 푠 푟푒푚푎푛푑푒푟 푅푛 (푛 + 1)! Taylor’s theorem says that there exists some value 푧 between 푎 and 푥 for which: ∞ 푓(푘)(푎) 푓(푛+1)(푧) ∑ (푥 − 푎)푘 can be replaced by 푅 (푥) = (푥 − 푎)푛+1 푘! 푛 (푛 + 1)! 푘=푛+1 2 Approximating function by a polynomial function So we are good to go.
    [Show full text]