Physics 112 Mathematical Notes Winter 2000 1. Power Series

Total Page:16

File Type:pdf, Size:1020Kb

Physics 112 Mathematical Notes Winter 2000 1. Power Series Physics 112 Mathematical Notes Winter 2000 1. Power Series Expansion of the Fermi-Dirac Integral The Fermi-Dirac integral is defined as: ∞ 1 xn−1 dx fn(z) ≡ , Γ(n) z−1ex +1 0 µ/kT where x ≡ /kT and z ≡ e . We wish to derive a power series expansion for fn(z)that is useful in the limit of z → 0. We manipulate fn(z) as follows: ∞ z xn−1 dx fn(z)= Γ(n) ex + z 0 ∞ z xn−1 dx = Γ(n) ex(1 + ze−x) 0 ∞ ∞ z −x n−1 m −x m = e x dx (−1) (ze ) Γ(n) 0 m=0 ∞ ∞ z = (−1)mzm e−(m+1)xxn−1 dx . Γ(n) m=0 0 Using the well known integral: ∞ Γ(n) e−Axxn−1 dx = , An 0 and changing the summation variable to p = m + 1, we end up with: ∞ (−1)p−1zp fn(z)= n . (1) p=1 p which is the desired power series expansion. This result is also useful for deriving additional properties ofthe fn(z). For example, it is a simple matter use eq. (1) to verify: ∂ fn−1(z)=z fn(z) . ∂z Note that the classical limit is obtained for z 1. In this limit, which also corresponds to the high temperature limit, fn(z) z. One additional special case is noteworthy. If 1 z =1,weobtain ∞ (−1)p−1 fn(1) = n . p=0 p To evaluate this sum, we rewrite it as follows: 1 − 1 fn(1) = n n p odd p p even p 1 1 − 1 = n + n 2 n p odd p p even p p even p ∞ ∞ 1 − 1 = n 2 n p=1 p p=1 (2p) ∞ − 1 1 = 1 n−1 n . 2 p=1 p where p even [odd] above means we sum over positive even [odd] integers. The Riemann zeta-function is defined as: ∞ ≡ 1 ζ(n) n . p=1 p Thus, we conclude that ∞ − p−1 ( 1) − 1 fn(1) = n = 1 n−1 ζ(n) . (2) p=0 p 2 2. Asymptotic Expansion of the Fermi-Dirac Integral We again consider the Fermi-Dirac integral, which we rewrite in the following form: ∞ 1 xn−1 dx fn(y) ≡ , Γ(n) ex−y +1 0 where y ≡ µ/kT =lnz. We now wish to derive an asymptotic expansion for fn(y)which is useful in the limit of y →∞. 2 In the limit of y →∞, which corresponds to the low temperature limit, 1 1,x<y, = (3) ex−y +1 0,x>y. This is just the statement that all the energy levels ofthe Fermi gas are singly occupied (i.e., n = 1) below the Fermi energy (F = µ) and are unoccupied (i.e., n =0)abovethe Fermi energy. Thus, in this limit, y n n 1 n−1 y y fn(y) x dx = = . Γ(n) nΓ(n) Γ(n +1) 0 We now want to improve on this approximation. To do so, we subtract this approximate result from the exact integral and study the remainder. First, it is convenient to introduce some notation. The step function is defined as: 1,x>0 , Θ(x)= 0,x<0 . Using this result, eq. (3) implies that: 1 lim =Θ(y − x) . y→∞ ex−y +1 Thus, we examine the following integral: ∞ 1 n−1 hn(y) ≡ − Θ(y − x) x dx . ex−y +1 0 Change variables to w = x − y. Then, ∞ 1 n−1 hn(y)= − Θ(−w) (w + y) dw ew +1 −y ∞ 1 − Θ(−w) (w + y)n−1 dw ew +1 −∞ ∞ n−1 1 w yn−1 − Θ(−w) 1+ dw . ew +1 y −∞ In the second step above, we replaced the lower limit −y with −∞. Since we seek an approximation valid for large y, this should be a good approximation. One can check that (−µ)/kT This behavior is somewhat easier to see by considering the T → 0 limit of n =1/[e +1]. Then, change variables back to x = /kT and y = µ/kT to recover eq. (3). 3 the error we make at this step is exponentially small. In the limit oflarge y we expand (1 + w/y)n−1 in a power series using the binomial theorem: n−1 ∞ p w w 1+ = C(n − 1,p) y p=0 y ∞ p 1 n(n − 1)(n − 2) ···(n − p) w = . n p=0 p! y Note that this formula is valid even when n is not a positive integer. (For positive integer n, the sum stops after p = n − 1.) If n is not a positive integer, the above expansion converges only when |w/y| < 1. This raises a concern, since we are about to insert this expansion into an integral where w varies from −∞ to +∞. No matter how large y is, this step appears to be illegal in the range of w-integration where |w| > |y|. Nevertheless, we shall close our eyes to this problem and proceed. One can show that this step cannot result in a convergent expansion ofthe integral (when n is not a positive integer). However, the resulting expression is a valid asymptotic expansion. Although the proofofthis statement lies beyond the scope ofthis note, it should be noted that the phenomenon just described is quite common in the derivation ofasymptotic expansions. Thus, we insert the expansion of(1 + w/y)n−1 into the integral, and we interchange the sum and integral (this step also needs mathematical justification). The result is: ∞ n−1 ∞ y n(n − 1)(n − 2) ···(n − p) 1 p hn(y) − Θ(−w) w dw . (4) n yp p! ew +1 p=0 −∞ At this point, focus on the integrand. Define F (w) ≡ (ew +1)−1 −Θ(−w). For positive values of w,Θ(−w)=0sothatF (w)=1/(ew + 1) while 1 −e−w −1 F (−w)= − 1= = = −F (w) . e−w +1 e−w +1 ew +1 That is, F (w) is an odd function of w. Thus, for even p, the integral in eq. (4) vanishes. For odd p,sincewpF (w) is an even function, we can set the lower limit of integration to 0 and multiply by 2 without changing the value ofthe integral. Thus, setting p =2j − 1, with j =1, 2, 3,..., we end up with ∞ ∞ 2yn−1 n(n − 1)(n − 2) ···(n − 2j +1) w2j−1 hn(y) dw . n y2j−1(2j − 1)! ew +1 j=1 0 4 The integral above is related to the Riemann zeta-function; using eq. (2), ∞ xn−1 dx =Γ(n)fn(z =1) ex +1 0 1 =Γ(n)ζ(n) 1 − . 2n−1 For positive integer n,Γ(n)=(n − 1)!,soweendupwith n ∞ − − ··· − 2y n(n 1)(n 2) (n 2j +1) − 1 hn(y) 2j 1 2j−1 ζ(2j) . n j=1 y 2 The last step is to note the relation between fn(y)andhn(y): yn 1 fn(y)= + hn(y) . Γ(n +1) Γ(n) Inserting our result for hn(y) and using the fact that Γ(n +1)=nΓ(n), we arrive at the desired asymptotic expansion for fn(y)fory 1: n ∞ − − ··· − y n(n 1)(n 2) (n 2j +1) − 1 fn(y) 1+2 2j 1 2j−1 ζ(2j) . Γ(n +1) j=1 y 2 Note that the values of ζ(2j) are known for positive integer j: (−1)j+1(2π)2j ζ(2j)= B2j , 2(2j)! where the B2j are Bernoulli numbers. For convenience, we display the first two terms ofthe asymptotic expansion of fn(y): yn π2n(n − 1) 1 fn(y) 1+ + O . Γ(n +1) 6y2 y4 Bernoulli numbers are defined via the Taylor series of the function x/(ex − 1). Specifically, x ∞ B xn n . ex − = n 1 n=0 ! By explicitly computing this Taylor series, one finds that B0 =1,B1 = −1/2, B2 =1/6, B3 =0, B4 = −1/30,... In general, for n =1, 2, 3,..., B2n+1 =0. 5 3. Power Series Expansion of the Bose-Einstein Integral The Bose-Einstein integral is defined as: ∞ 1 xn−1 dx gn(z) ≡ , Γ(n) z−1ex − 1 0 where x ≡ /kT and z ≡ eµ/kT . For a Bose gas with a conserved particle number, one must have µ<0 which means that 0 ≤ z<1. The photon gas possesses no conserved particle number; hence, µ =0orz =1. We wish to derive a power series expansion for gn(z) that is useful in the limit of z → 0. The steps are very similar to those ofsection 1. We manipulate gn(z) as follows: ∞ z xn−1 dx gn(z)= Γ(n) ex − z 0 ∞ z xn−1 dx = Γ(n) ex(1 − ze−x) 0 ∞ ∞ z = e−xxn−1 dx (ze−x)m Γ(n) 0 m=0 ∞ ∞ z = zm e−(m+1)xxn−1 dx . Γ(n) m=0 0 Evaluating the remaining integral and putting p = m + 1 yields the desired power series expansion for the Bose-Einstein integral: ∞ zp gn(z)= n . (5) p=1 p This result is also useful for deriving additional properties of the gn(z).Forexample,itis a simple matter use eq. (5) to verify: ∂ gn−1(z)=z gn(z) . (6) ∂z As noted above, the allowed region of z corresponds to 0 ≤ z ≤ 1(wherez =1 corresponds to the case ofa photon gas). The power series for gn(z) converges for all 6 allowed values of z. As in the Fermi-Dirac case, in the classical limit (i.e.,forz 1), which also corresponds to the high temperature limit, gn(z) z.
Recommended publications
  • Asymptotic Estimates of Stirling Numbers
    Asymptotic Estimates of Stirling Numbers By N. M. Temme New asymptotic estimates are given of the Stirling numbers s~mJ and (S)~ml, of first and second kind, respectively, as n tends to infinity. The approxima­ tions are uniformly valid with respect to the second parameter m. 1. Introduction The Stirling numbers of the first and second kind, denoted by s~ml and (S~~m>, respectively, are defined through the generating functions n x(x-l)···(x-n+l) = [. S~m)Xm, ( 1.1) m= 0 n L @~mlx(x -1) ··· (x - m + 1), ( 1.2) m= 0 where the left-hand side of (1.1) has the value 1 if n = 0; similarly, for the factors in the right-hand side of (1.2) if m = 0. This gives the 'boundary values' Furthermore, it is convenient to agree on s~ml = @~ml= 0 if m > n. The Stirling numbers are integers; apart from the above mentioned zero values, the numbers of the second kind are positive; those of the first kind have the sign of ( - l)n + m. Address for correspondence: Professor N. M. Temme, CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands. e-mail: [email protected]. STUDIES IN APPLIED MATHEMATICS 89:233-243 (1993) 233 Copyright © 1993 by the Massachusetts Institute of Technology Published by Elsevier Science Publishing Co., Inc. 0022-2526 /93 /$6.00 234 N. M. Temme Alternative generating functions are [ln(x+1)r :x n " s(ln)~ ( 1.3) m! £..,, n n!' n=m ( 1.4) The Stirling numbers play an important role in difference calculus, combina­ torics, and probability theory.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation
    Konuralp Journal of Mathematics, 8 (2) (2020) 365-369 Konuralp Journal of Mathematics Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X Asymptotics of Singularly Perturbed Volterra Type Integro-Differential Equation Fatih Say1 1Department of Mathematics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey Abstract This paper addresses the asymptotic behaviors of a linear Volterra type integro-differential equation. We study a singular Volterra integro equation in the limiting case of a small parameter with proper choices of the unknown functions in the equation. We show the effectiveness of the asymptotic perturbation expansions with an instructive model equation by the methods in superasymptotics. The methods used in this study are also valid to solve some other Volterra type integral equations including linear Volterra integro-differential equations, fractional integro-differential equations, and system of singular Volterra integral equations involving small (or large) parameters. Keywords: Singular perturbation, Volterra integro-differential equations, asymptotic analysis, singularity 2010 Mathematics Subject Classification: 41A60; 45M05; 34E15 1. Introduction A systematic approach to approximation theory can find in the subject of asymptotic analysis which deals with the study of problems in the appropriate limiting regimes. Approximations of some solutions of differential equations, usually containing a small parameter e, are essential in the analysis. The subject has made tremendous growth in recent years and has a vast literature. Developed techniques of asymptotics are successfully applied to problems including the classical long-standing problems in mathematics, physics, fluid me- chanics, astrodynamics, engineering and many diverse fields, for instance, see [1, 2, 3, 4, 5, 6, 7]. There exists a plethora of examples of asymptotics which includes a wide variety of problems in rich results from the very practical to the highly theoretical analysis.
    [Show full text]
  • Student Understanding of Taylor Series Expansions in Statistical Mechanics
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020110 (2013) Student understanding of Taylor series expansions in statistical mechanics Trevor I. Smith,1 John R. Thompson,2,3 and Donald B. Mountcastle2 1Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA 2Department of Physics and Astronomy, University of Maine, Orono, Maine 04469, USA 3Maine Center for Research in STEM Education, University of Maine, Orono, Maine 04469, USA (Received 2 March 2012; revised manuscript received 23 May 2013; published 8 August 2013) One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses. DOI: 10.1103/PhysRevSTPER.9.020110 PACS numbers: 01.40.Fk, 05.20.Ày, 02.30.Lt, 02.30.Mv students’ use of Taylor series expansion to derive and I. INTRODUCTION understand the Boltzmann factor as a component of proba- Over the past several decades, much work has been done bility in the canonical ensemble. While this is a narrow investigating ways in which students understand and learn topic, we feel that it serves as an excellent example of physics (see Refs.
    [Show full text]
  • Nonlinear Optics
    Nonlinear Optics: A very brief introduction to the phenomena Paul Tandy ADVANCED OPTICS (PHYS 545), Spring 2010 Dr. Mendes INTRO So far we have considered only the case where the polarization density is proportionate to the electric field. The electric field itself is generally supplied by a laser source. PE= ε0 χ Where P is the polarization density, E is the electric field, χ is the susceptibility, and ε 0 is the permittivity of free space. We can imagine that the electric field somehow induces a polarization in the material. As the field increases the polarization also in turn increases. But we can also imagine that this process does not continue indefinitely. As the field grows to be very large the field itself starts to become on the order of the electric fields between the atoms in the material (medium). As this occurs the material itself becomes slightly altered and the behavior is no longer linear in nature but instead starts to become weakly nonlinear. We can represent this as a Taylor series expansion model in the electric field. ∞ n 23 PAEAEAEAE==++∑ n 12 3+... n=1 This model has become so popular that the coefficient scaling has become standardized using the letters d and χ (3) as parameters corresponding the quadratic and cubic terms. Higher order terms would play a role too if the fields were extremely high. 2(3)3 PEdEE=++()εχ0 (2) ( 4χ ) + ... To get an idea of how large a typical field would have to be before we see a nonlinear effect, let us scale the above equation by the first order term.
    [Show full text]
  • An Introduction to Asymptotic Analysis Simon JA Malham
    An introduction to asymptotic analysis Simon J.A. Malham Department of Mathematics, Heriot-Watt University Contents Chapter 1. Order notation 5 Chapter 2. Perturbation methods 9 2.1. Regular perturbation problems 9 2.2. Singular perturbation problems 15 Chapter 3. Asymptotic series 21 3.1. Asymptotic vs convergent series 21 3.2. Asymptotic expansions 25 3.3. Properties of asymptotic expansions 26 3.4. Asymptotic expansions of integrals 29 Chapter 4. Laplace integrals 31 4.1. Laplace's method 32 4.2. Watson's lemma 36 Chapter 5. Method of stationary phase 39 Chapter 6. Method of steepest descents 43 Bibliography 49 Appendix A. Notes 51 A.1. Remainder theorem 51 A.2. Taylor series for functions of more than one variable 51 A.3. How to determine the expansion sequence 52 A.4. How to find a suitable rescaling 52 Appendix B. Exam formula sheet 55 3 CHAPTER 1 Order notation The symbols , o and , were first used by E. Landau and P. Du Bois- Reymond and areOdefined as∼ follows. Suppose f(z) and g(z) are functions of the continuous complex variable z defined on some domain C and possess D ⊂ limits as z z0 in . Then we define the following shorthand notation for the relative!propertiesD of these functions in the limit z z . ! 0 Asymptotically bounded: f(z) = (g(z)) as z z ; O ! 0 means that: there exists constants K 0 and δ > 0 such that, for 0 < z z < δ, ≥ j − 0j f(z) K g(z) : j j ≤ j j We say that f(z) is asymptotically bounded by g(z) in magnitude as z z0, or more colloquially, and we say that f(z) is of `order big O' of g(z).
    [Show full text]
  • A Note on the Asymptotic Expansion of the Lerch's Transcendent Arxiv
    A note on the asymptotic expansion of the Lerch’s transcendent Xing Shi Cai∗1 and José L. Lópezy2 1Department of Mathematics, Uppsala University, Uppsala, Sweden 2Departamento de Estadística, Matemáticas e Informática and INAMAT, Universidad Pública de Navarra, Pamplona, Spain June 5, 2018 Abstract In [7], the authors derived an asymptotic expansion of the Lerch’s transcendent Φ(z; s; a) for large jaj, valid for <a > 0, <s > 0 and z 2 C n [1; 1). In this paper we study the special case z ≥ 1 not covered in [7], deriving a complete asymptotic expansion of the Lerch’s transcendent Φ(z; s; a) for z > 1 and <s > 0 as <a goes to infinity. We also show that when a is a positive integer, this expansion is convergent for Pm n s <z ≥ 1. As a corollary, we get a full asymptotic expansion for the sum n=1 z =n for fixed z > 1 as m ! 1. Some numerical results show the accuracy of the approximation. 1 Introduction The Lerch’s transcendent (Hurwitz-Lerch zeta function) [2, §25.14(i)] is defined by means of the power series 1 X zn Φ(z; s; a) = ; a 6= 0; −1; −2;:::; (a + n)s n=0 on the domain jzj < 1 for any s 2 C or jzj ≤ 1 for <s > 1. For other values of the variables arXiv:1806.01122v1 [math.CV] 4 Jun 2018 z; s; a, the function Φ(z; s; a) is defined by analytic continuation. In particular [7], 1 Z 1 xs−1e−ax Φ(z; s; a) = −x dx; <a > 0; z 2 C n [1; 1) and <s > 0: (1) Γ(s) 0 1 − ze ∗This work is supported by the Knut and Alice Wallenberg Foundation and the Ministerio de Economía y Competitividad of the spanish government (MTM2017-83490-P).
    [Show full text]
  • Fundamentals of Duct Acoustics
    Fundamentals of Duct Acoustics Sjoerd W. Rienstra Technische Universiteit Eindhoven 16 November 2015 Contents 1 Introduction 3 2 General Formulation 4 3 The Equations 8 3.1 AHierarchyofEquations ........................... 8 3.2 BoundaryConditions. Impedance.. 13 3.3 Non-dimensionalisation . 15 4 Uniform Medium, No Mean Flow 16 4.1 Hard-walled Cylindrical Ducts . 16 4.2 RectangularDucts ............................... 21 4.3 SoftWallModes ................................ 21 4.4 AttenuationofSound.............................. 24 5 Uniform Medium with Mean Flow 26 5.1 Hard-walled Cylindrical Ducts . 26 5.2 SoftWallandUniformMeanFlow . 29 6 Source Expansion 32 6.1 ModalAmplitudes ............................... 32 6.2 RotatingFan .................................. 32 6.3 Tyler and Sofrin Rule for Rotor-Stator Interaction . ..... 33 6.4 PointSourceinaLinedFlowDuct . 35 6.5 PointSourceinaDuctWall .......................... 38 7 Reflection and Transmission 40 7.1 A Discontinuity in Diameter . 40 7.2 OpenEndReflection .............................. 43 VKI - 1 - CONTENTS CONTENTS A Appendix 49 A.1 BesselFunctions ................................ 49 A.2 AnImportantComplexSquareRoot . 51 A.3 Myers’EnergyCorollary ............................ 52 VKI - 2 - 1. INTRODUCTION CONTENTS 1 Introduction In a duct of constant cross section, with a medium and boundary conditions independent of the axial position, the wave equation for time-harmonic perturbations may be solved by means of a series expansion in a particular family of self-similar solutions, called modes. They are related to the eigensolutions of a two-dimensional operator, that results from the wave equation, on a cross section of the duct. For the common situation of a uniform medium without flow, this operator is the well-known Laplace operator 2. For a non- uniform medium, and in particular with mean flow, the details become mo∇re complicated, but the concept of duct modes remains by and large the same1.
    [Show full text]
  • Fourier Series
    Chapter 10 Fourier Series 10.1 Periodic Functions and Orthogonality Relations The differential equation ′′ y + 2y = F cos !t models a mass-spring system with natural frequency with a pure cosine forcing function of frequency !. If 2 = !2 a particular solution is easily found by undetermined coefficients (or by∕ using Laplace transforms) to be F y = cos !t. p 2 !2 − If the forcing function is a linear combination of simple cosine functions, so that the differential equation is N ′′ 2 y + y = Fn cos !nt n=1 X 2 2 where = !n for any n, then, by linearity, a particular solution is obtained as a sum ∕ N F y (t)= n cos ! t. p 2 !2 n n=1 n X − This simple procedure can be extended to any function that can be repre- sented as a sum of cosine (and sine) functions, even if that summation is not a finite sum. It turns out that the functions that can be represented as sums in this form are very general, and include most of the periodic functions that are usually encountered in applications. 723 724 10 Fourier Series Periodic Functions A function f is said to be periodic with period p> 0 if f(t + p)= f(t) for all t in the domain of f. This means that the graph of f repeats in successive intervals of length p, as can be seen in the graph in Figure 10.1. y p 2p 3p 4p 5p Fig. 10.1 An example of a periodic function with period p.
    [Show full text]
  • NM Temme 1. Introduction the Incomplete Gamma Functions Are Defined by the Integrals 7(A,*)
    Methods and Applications of Analysis © 1996 International Press 3 (3) 1996, pp. 335-344 ISSN 1073-2772 UNIFORM ASYMPTOTICS FOR THE INCOMPLETE GAMMA FUNCTIONS STARTING FROM NEGATIVE VALUES OF THE PARAMETERS N. M. Temme ABSTRACT. We consider the asymptotic behavior of the incomplete gamma func- tions 7(—a, —z) and r(—a, —z) as a —► oo. Uniform expansions are needed to describe the transition area z ~ a, in which case error functions are used as main approximants. We use integral representations of the incomplete gamma functions and derive a uniform expansion by applying techniques used for the existing uniform expansions for 7(0, z) and V(a,z). The result is compared with Olver's uniform expansion for the generalized exponential integral. A numerical verification of the expansion is given. 1. Introduction The incomplete gamma functions are defined by the integrals 7(a,*)= / T-Vcft, r(a,s)= / t^e^dt, (1.1) where a and z are complex parameters and ta takes its principal value. For 7(0,, z), we need the condition ^Ra > 0; for r(a, z), we assume that |arg2:| < TT. Analytic continuation can be based on these integrals or on series representations of 7(0,2). We have 7(0, z) + r(a, z) = T(a). Another important function is defined by 7>>*) = S7(a,s) = =^ fu^e—du. (1.2) This function is a single-valued entire function of both a and z and is real for pos- itive and negative values of a and z. For r(a,z), we have the additional integral representation e-z poo -zt j.-a r(a, z) = — r / dt, ^a < 1, ^z > 0, (1.3) L [i — a) JQ t ■+■ 1 which can be verified by differentiating the right-hand side with respect to z.
    [Show full text]
  • Graduate Macro Theory II: Notes on Log-Linearization
    Graduate Macro Theory II: Notes on Log-Linearization Eric Sims University of Notre Dame Spring 2017 The solutions to many discrete time dynamic economic problems take the form of a system of non-linear difference equations. There generally exists no closed-form solution for such problems. As such, we must result to numerical and/or approximation techniques. One particularly easy and very common approximation technique is that of log linearization. We first take natural logs of the system of non-linear difference equations. We then linearize the logged difference equations about a particular point (usually a steady state), and simplify until we have a system of linear difference equations where the variables of interest are percentage deviations about a point (again, usually a steady state). Linearization is nice because we know how to work with linear difference equations. Putting things in percentage terms (that's the \log" part) is nice because it provides natural interpretations of the units (i.e. everything is in percentage terms). First consider some arbitrary univariate function, f(x). Taylor's theorem tells us that this can be expressed as a power series about a particular point x∗, where x∗ belongs to the set of possible x values: f 0(x∗) f 00 (x∗) f (3)(x∗) f(x) = f(x∗) + (x − x∗) + (x − x∗)2 + (x − x∗)3 + ::: 1! 2! 3! Here f 0(x∗) is the first derivative of f with respect to x evaluated at the point x∗, f 00 (x∗) is the second derivative evaluated at the same point, f (3) is the third derivative, and so on.
    [Show full text]
  • Approximation of a Function by a Polynomial Function
    1 Approximation of a function by a polynomial function 1. step: Assuming that f(x) is differentiable at x = a, from the picture we see: 푓(푥) = 푓(푎) + ∆푓 ≈ 푓(푎) + 푓′(푎)∆푥 Linear approximation of f(x) at point x around x = a 푓(푥) = 푓(푎) + 푓′(푎)(푥 − 푎) 푅푒푚푎푛푑푒푟 푹 = 푓(푥) − 푓(푎) − 푓′(푎)(푥 − 푎) will determine magnitude of error Let’s try to get better approximation of f(x). Let’s assume that f(x) has all derivatives at x = a. Let’s assume there is a possible power series expansion of f(x) around a. ∞ 2 3 푛 푓(푥) = 푐0 + 푐1(푥 − 푎) + 푐2(푥 − 푎) + 푐3(푥 − 푎) + ⋯ = ∑ 푐푛(푥 − 푎) ∀ 푥 푎푟표푢푛푑 푎 푛=0 n 푓(푛)(푥) 푓(푛)(푎) 2 3 0 푓 (푥) = 푐0 + 푐1(푥 − 푎) + 푐2(푥 − 푎) + 푐3(푥 − 푎) + ⋯ 푓(푎) = 푐0 2 1 푓′(푥) = 푐1 + 2푐2(푥 − 푎) + 3푐3(푥 − 푎) + ⋯ 푓′(푎) = 푐1 2 2 푓′′(푥) = 2푐2 + 3 ∙ 2푐3(푥 − 푎) + 4 ∙ 3(푥 − 푎) ∙∙∙ 푓′′(푎) = 2푐2 2 3 푓′′′(푥) = 3 ∙ 2푐3 + 4 ∙ 3 ∙ 2(푥 − 푎) + 5 ∙ 4 ∙ 3(푥 − 푎) ∙∙∙ 푓′′′(푎) = 3 ∙ 2푐3 ⋮ (푛) (푛) n 푓 (푥) = 푛(푛 − 1) ∙∙∙ 3 ∙ 2 ∙ 1푐푛 + (푛 + 1)푛(푛 − 1) ⋯ 2푐푛+1(푥 − 푎) 푓 (푎) = 푛! 푐푛 ⋮ Taylor’s theorem If f (x) has derivatives of all orders in an open interval I containing a, then for each x in I, ∞ 푓(푛)(푎) 푓(푛)(푎) 푓(푛+1)(푎) 푓(푥) = ∑ (푥 − 푎)푛 = 푓(푎) + 푓′(푎)(푥 − 푎) + ⋯ + (푥 − 푎)푛 + (푥 − 푎)푛+1 + ⋯ 푛! 푛! (푛 + 1)! 푛=0 푛 ∞ 푓(푘)(푎) 푓(푘)(푎) = ∑ (푥 − 푎)푘 + ∑ (푥 − 푎)푘 푘! 푘! 푘=0 푘=푛+1 convention for the sake of algebra: 0! = 1 = 푇푛 + 푅푛 푛 푓(푘)(푎) 푇 = ∑ (푥 − 푎)푘 푝표푙푦푛표푚푎푙 표푓 푛푡ℎ 표푟푑푒푟 푛 푘! 푘=0 푓(푛+1)(푧) 푛+1 푅푛(푥) = (푥 − 푎) 푠 푟푒푚푎푛푑푒푟 푅푛 (푛 + 1)! Taylor’s theorem says that there exists some value 푧 between 푎 and 푥 for which: ∞ 푓(푘)(푎) 푓(푛+1)(푧) ∑ (푥 − 푎)푘 can be replaced by 푅 (푥) = (푥 − 푎)푛+1 푘! 푛 (푛 + 1)! 푘=푛+1 2 Approximating function by a polynomial function So we are good to go.
    [Show full text]