Predictive Toxicogenomics for the Identification of Chemical Carcinogens : Application to Human Hepatic Cell Lines

Total Page:16

File Type:pdf, Size:1020Kb

Predictive Toxicogenomics for the Identification of Chemical Carcinogens : Application to Human Hepatic Cell Lines Predictive toxicogenomics for the identification of chemical carcinogens : application to human hepatic cell lines Citation for published version (APA): Christina Magkoufopoulou, C. (2011). Predictive toxicogenomics for the identification of chemical carcinogens : application to human hepatic cell lines. Datawyse / Universitaire Pers Maastricht. https://doi.org/10.26481/dis.20111208cc Document status and date: Published: 01/01/2011 DOI: 10.26481/dis.20111208cc Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.umlib.nl/taverne-license Take down policy If you believe that this document breaches copyright please contact us at: repository@maastrichtuniversity.nl providing details and we will investigate your claim. Download date: 30 Sep. 2021 Predictive toxicogenomics for the identification of chemical carcinogens: Application to human hepatic cell lines Christina Magkoufopoulou Christina Magkoufopoulou, Maastricht 2011 ISBN: 978 94 6159 096 1 Layout: Lia Rozou Printing: Datawyse/Universitaire Pers Maastricht, The Netherlands Predictive toxicogenomics for the identification of chemical carcinogens: Application to human hepatic cell lines DISSERTATION to obtain the degree of Doctor at Maastricht University, on the authority of the Rector Magnificus, Prof. dr. G.P.M.F Mols, in accordance with the decision of the Board of Deans, to be defended in public on Thursday 8th December 2011, at 10:00 by Christina Magkoufopoulou UMP UNIVERSITAIRE PERS MAASTRICHT Supervisor Prof. dr. J.C.S. Kleinjans Co-supervisor Dr. J. van Delft Assessment Committee Prof. dr. F.C.S. Ramaekers (chairman) Prof. dr. D. Kirkland Prof. dr. P. Lambin Prof. dr. L.H.F. Mullenders Prof. dr. H. Schmidt This research project was supported by grants from the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs (STW MFA6809). Contents Chapter 1 General introduction 7 Chapter 2 Comparison of HepG2 and HepaRG by whole-genome gene expression 31 analysis for the purpose of chemical hazard identification Chapter 3 Comparison of phenotypic and transcriptomic effects of false positive 53 genotoxins, true genotoxins and non-genotoxins using HepG2 cells Chapter 4 A transcriptomics-based in vitro assay for predicting chemical 77 genotoxicity in vivo Chapter 5 Characterization of the importance of NR0B2 as a classifying gene for 97 genotoxicity prediction: a silencing approach prior and after genotoxic treatment Chapter 6 Transcriptomics-based evaluation in HepG2 cells of human 119 carcinogenic potential of known rodent non-genotoxic carcinogens Chapter 7 Summary and general discussion 143 Chapter 8 Samenvatting en algemene discussie 157 Acknowledgements 173 Curriculum vitae and list of publications 177 Chapter 1 General introduction 7 8 Chapter 1 Molecular biology of cancer With cancer being one of the leading causes of death in the western world, accounting for approximately 25% of total deaths (1, 2), a lot of effort is made for the understanding of the molecular events that precede carcinogenesis. The main hypothesis for the explanation of cancer development refers to the occurrence of gene mutations. Whereas several types of cancer have been associated with the presence of specific gene mutations, these are not suf- ficient or required to induce cancer. For instance, although the inheritance of specific mutations of the BRCA1 or BRCA2 genes predispose for breast cancer; different studies result in different average risk for breast cancer in BRCA1 mutation carriers varying from 57% to 90% (3). In a similar manner, whereas mutations in the APC gene are responsible for the development of familial adenomatous polyposis, a hereditary disease leading to colorectal cancer, a significant number of patients diagnosed with this disease do not carry these mutations (4). In general, hereditary cancers account for only 5%-10% of all diagnosed cancers, whereas the remaining 90%-95% of cancer incidences, which are characterized as sporadic, are due to environmental exposures, dietary factors, hormones, normal aging and other influences (5, 6). Independently from the type of cancer, whether it is inherited or sporadic, it is generally acknowledged that carcinogenesis is a very complicated process that comprises several alterations in the cells required for the progressive conversion of normal cells into cancer cells (7, 8). These alterations, at the molecular level, mainly refer to changes in the genome of a particular cell and include point mutations leading to an altered protein product; chro- mosomal imbalance or instability resulting in an altered expression of a particular gene; chromosomal breakage and rearrangement resulting to loss of a gene or its fusion with an- other gene leading to the production of a chimeric protein with altered function; and epige- netic modifications to DNA causing gene silencing. Occurrence of mutations to oncogenes or tumor suppressor genes is considered the initial event of the process of carcinogenesis. Oncogenes are defined as genes whose products positively regulate cell proliferation. Mu- tations to these genes usually result to an increased activity of the proteins that they code for. On the contrary, tumor suppressor genes code for proteins that negatively regulate cell proliferation and, in most cases, mutations to these genes inactivate the protein function (6). Usually, a mutation to one copy of the oncogene is sufficient to alter the function of the protein, whereas for the tumor suppressor genes both copies need to be mutated for the function of the protein to change. Therefore, mutations in oncogenes are called dominant, while mutations in tumor suppressor genes are called recessive (9). At the cellular level, the alterations that occur provide the cells with growth advan- tages and can be divided into 8 different types: sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, reprogramming energy metabolism, evading immune destruction, inducing angiogenesis and activating invasion and metastasis. Besides the genomic instability described above, another cause that can lead to the acquisition of these properties from the cancer cells is the presence of inflammatory cells in the tumor microenvironment, as inflammatory cells can release General introduction 9 chemicals that are mutagenic for the nearby cancer cells and therefore can accelerate their genomic instability (10). Chemical carcinogenesis Although the alterations occurring in a cell that can lead to its transformation into a tumor cell as described above, can happen spontaneously, many times these alterations are caused by exogenous factors, such as chemical compounds. Exposure to these com- pounds may lead to carcinogenesis. This process of chemical carcinogenesis has been di- vided in three distinct stages: initiation, promotion and progression (Figure 1) (8). Figure 1: Chemical Carcinogenesis. After exposure to chemicals the process of chemical carcinogenesis is initiated. The cells can repair the induced DNA damage and return to the normal state or proliferate with damaged DNA entering the promotion phase of chemical carcinogenesis. The cells with DNA adducts as well as the initiated cells may either induce apoptotic mechanisms or mechanisms of toxicity that will lead to cell death or further proliferate entering the progression phase of chemical carcinogenesis. The cells that are in the progression phase will be transformed to can- cer cells. [Figure modified from (8)] Initiation is the first stage of carcinogenesis where the cells accumulate genomic changes caused by the chemical agents. These genomic changes are due to the direct in- teraction of the chemical or its metabolites with the DNA, via the formation of DNA-adducts (11). At this stage, the cells may avoid tumor transformation by either repairing the DNA- damage or by activating apoptotic mechanisms (12, 13). However, if the cells proceed to cell division while carrying these genomic changes, these changes are irreversible and trans-
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • View Is Portrayed Schematically in Figure 7B
    BASIC RESEARCH www.jasn.org Recombination Signal Binding Protein for Ig-kJ Region Regulates Juxtaglomerular Cell Phenotype by Activating the Myo-Endocrine Program and Suppressing Ectopic Gene Expression † † ‡ Ruth M. Castellanos-Rivera,* Ellen S. Pentz,* Eugene Lin,* Kenneth W. Gross, † Silvia Medrano,* Jing Yu,§ Maria Luisa S. Sequeira-Lopez,* and R. Ariel Gomez* *Department of Pediatrics, School of Medicine, †Department of Biology, Graduate School of Arts and Sciences, and §Department of Cell Biology, University of Virginia, Charlottesville, Virginia; and ‡Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York ABSTRACT Recombination signal binding protein for Ig-kJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7)and smooth muscle (Acta2, Myh11, Cnn1,andSmtn) genes and regulators of smooth muscle expression (miR- 145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin- expressing cells in the juxtaglomerular apparatus.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD (cevansmo@iu.edu) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • What Your Genome Doesn't Tell
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Multi-layered epigenetic control of T cell fate decisions Permalink https://escholarship.org/uc/item/8rs7c7b3 Author Yu, Bingfei Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Multi-layered epigenetic control of T cell fate decisions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Bingfei Yu Committee in charge: Professor Ananda Goldrath, Chair Professor John Chang Professor Stephen Hedrick Professor Cornelis Murre Professor Wei Wang 2018 Copyright Bingfei Yu, 2018 All rights reserved. The dissertation of Bingfei Yu is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii DEDICATION To my parents who have been giving me countless love, trust and support to make me who I am. iv EPIGRAPH Stay hungary. Stay foolish. | Steve Jobs quoted from the back cover of the 1974 edition of the Whole Earth Catalog v TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Epigraph.....................................v Table of Contents................................. vi List of Figures.................................. ix Acknowledgements................................x Vita........................................ xii Abstract of
    [Show full text]
  • Gene Networks Activated by Specific Patterns of Action Potentials in Dorsal Root Ganglia Neurons Received: 10 August 2016 Philip R
    www.nature.com/scientificreports OPEN Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons Received: 10 August 2016 Philip R. Lee1,*, Jonathan E. Cohen1,*, Dumitru A. Iacobas2,3, Sanda Iacobas2 & Accepted: 23 January 2017 R. Douglas Fields1 Published: 03 March 2017 Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. Adaptation in the nervous system in response to external stimuli requires synthesis of new gene products in order to elicit long lasting changes in processes such as development, response to injury, learning, and memory1. Information in the environment is coded in the pattern of action-potential firing, therefore gene transcription must be regulated by the pattern of neuronal firing.
    [Show full text]
  • Normal B-1A Cell Development Requires B Cell-Intrinsic Nfatc1 Activity
    Normal B-1a cell development requires B cell-intrinsic NFATc1 activity Robert Berland* and Henry H. Wortis Department of Pathology and Graduate Program in Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 Edited by Gerald R. Crabtree, Stanford University School of Medicine, Stanford, CA, and approved September 12, 2003 (received for review June 12, 2003) B-1a cells, an anatomically, phenotypically, and functionally dis- CD40 ligation and can transactivate NFAT-dependent reporter tinct subset of B cells that produce the bulk of natural serum IgM constructs (26–28). The physiological functions of NFAT in B and much of gut-associated IgA, are an important component of cells remain unclear. Targeted disruption of NFATc2 was re- the early response to pathogens. Because the induced expression ported to result in a slightly increased B cell proliferative of CD5, a hallmark of B-1a cells, requires a nuclear factor of response to BCR or CD40 signaling (29). NFATc1Ϫ/Ϫ mice activated T cells (NFAT)-dependent enhancer, we examined the exhibit reduced levels of serum IgG1 (30, 31) and IgE (31), but role of NFAT transcription factors in B-1a development. Here we this is apparently the result of impaired IL-4 production by T show that the B-1a compartment is normal in mice lacking NFATc2 cells (30, 31). B cells in these mice were hyporesponsive to BCR but essentially absent in mice lacking NFATc1. Loss of NFATc1 or CD40 ligation ex vivo, but any in vivo consequences of this are affects both peritoneal and splenic B-1a cells.
    [Show full text]
  • Isoform-Selective NFAT Inhibitor: Potential Usefulness and Development
    International Journal of Molecular Sciences Review Isoform-Selective NFAT Inhibitor: Potential Usefulness and Development Noriko Kitamura 1 and Osamu Kaminuma 1,2,* 1 Laboratory of Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; kitamura-nr@igakuken.or.jp 2 Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan * Correspondence: okami@hiroshima-u.ac.jp; Tel.: +81-82-257-5819 Abstract: Nuclear factor of activated T cells (NFAT), which is the pharmacological target of immuno- suppressants cyclosporine and tacrolimus, has been shown to play an important role not only in T cells (immune system), from which their name is derived, but also in many biological events. There- fore, functional and/or structural abnormalities of NFAT are linked to the pathogenesis of diseases in various organs. The NFAT protein family consists of five isoforms, and each isoform performs diverse functions and has unique expression patterns in the target tissues. This diversity has made it difficult to obtain ideal pharmacological output for immunosuppressants that inhibit the activity of almost all NFAT family members, causing serious and wide-ranging side effects. Moreover, it remains unclear whether isoform-selective NFAT regulation can be achieved by targeting the struc- tural differences among NFAT isoforms and whether this strategy can lead to the development of better drugs than the existing ones. This review summarizes the role of the NFAT family members in biological events, including the development of various diseases, as well as the usefulness of and Citation: Kitamura, N.; problems associated with NFAT-targeting therapies, including those dependent on current immuno- Kaminuma, O.
    [Show full text]
  • Roles of Glycogen Synthase Kinase-3 (GSK-3) in Cardiac Development and Heart Disease
    J UOEH 40( 2 ): 147-156(2018) 147 [Review] Roles of Glycogen Synthase Kinase-3 (GSK-3) in Cardiac Development and Heart Disease Fumi Takahashi-Yanaga* Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan. Yahatanishi-ku, Kitakyushu 807-8555, Japan Abstract : Glycogen synthase kinase-3 (GSK-3) is a cytoplasmic serine/threonine protein kinase which is known to regulate a variety of cellular processes through a number of signaling pathways important for cell proliferation, stem cell renewal, apoptosis and development. Although GSK-3 exists in a variety of tissues, this kinase plays very im- portant roles in the heart to control its development through the formation of heart and cardiomyocyte proliferation. GSK-3 is also recognized as one of the main molecules that control cardiac hypertrophy and fibrosis. Therefore, GSK-3 could be an attractive target for the development of new drugs to cure cardiac diseases. The present review summarizes the roles of GSK-3 in the signaling pathways and the heart, and discusses the possibility of new drug development targeting this kinase. Keywords : GSK-3, cardiac development, cardiac hypertrophy, cardiac fibrosis. (Received February 7, 2018, accepted April 6, 2018) Introduction 1. Glycogen synthase kinase-3 (GSK-3) GSK-3 was originally identified as a kinase that can Glycogen synthase kinase-3 (GSK-3) was identified phosphorylate glycogen synthase to inhibit glycogen in 1980 as a protein kinase that inactivates glycogen synthesis. In general, kinases activate their target pro- synthase, the rate-limiting enzyme in glycogen synthe- teins by phosphorylation. However, in 1980, GSK-3 sis.
    [Show full text]
  • Downregulation of Carnitine Acyl-Carnitine Translocase by Mirnas
    Page 1 of 288 Diabetes 1 Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion Mufaddal S. Soni1, Mary E. Rabaglia1, Sushant Bhatnagar1, Jin Shang2, Olga Ilkayeva3, Randall Mynatt4, Yun-Ping Zhou2, Eric E. Schadt6, Nancy A.Thornberry2, Deborah M. Muoio5, Mark P. Keller1 and Alan D. Attie1 From the 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; 2Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey; 3Sarah W. Stedman Nutrition and Metabolism Center, Duke Institute of Molecular Physiology, 5Departments of Medicine and Pharmacology and Cancer Biology, Durham, North Carolina. 4Pennington Biomedical Research Center, Louisiana State University system, Baton Rouge, Louisiana; 6Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York. Corresponding author Alan D. Attie, 543A Biochemistry Addition, 433 Babcock Drive, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, (608) 262-1372 (Ph), (608) 263-9608 (fax), adattie@wisc.edu. Running Title: Fatty acyl-carnitines enhance insulin secretion Abstract word count: 163 Main text Word count: 3960 Number of tables: 0 Number of figures: 5 Diabetes Publish Ahead of Print, published online June 26, 2014 Diabetes Page 2 of 288 2 ABSTRACT We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs.
    [Show full text]
  • Analyses of PDE-Regulated Phosphoproteomes Reveal Unique
    Analyses of PDE-regulated phosphoproteomes reveal PNAS PLUS unique and specific cAMP-signaling modules in T cells Michael-Claude G. Beltejara, Ho-Tak Laua, Martin G. Golkowskia, Shao-En Onga, and Joseph A. Beavoa,1 aDepartment of Pharmacology, University of Washington, Seattle, WA 98195 Contributed by Joseph A. Beavo, May 28, 2017 (sent for review March 10, 2017; reviewed by Paul M. Epstein, Donald H. Maurice, and Kjetil Tasken) Specific functions for different cyclic nucleotide phosphodiester- to bias T-helper polarization toward Th2, Treg, or Th17 pheno- ases (PDEs) have not yet been identified in most cell types. types (13, 14). In a few cases increased cAMP may even potentiate Conventional approaches to study PDE function typically rely on the T-cell activation signal (15), particularly at early stages of measurements of global cAMP, general increases in cAMP- activation. Recent MS-based proteomic studies have been useful dependent protein kinase (PKA), or the activity of exchange in characterizing changes in the phosphoproteome of T cells under protein activated by cAMP (EPAC). Although newer approaches various stimuli such as T-cell receptor stimulation (16), prosta- using subcellularly targeted FRET reporter sensors have helped glandin signaling (17), and oxidative stress (18), so much of the define more compartmentalized regulation of cAMP, PKA, and total Jurkat phosphoproteome is known. Until now, however, no EPAC, they have limited ability to link this regulation to down- information on the regulation of phosphopeptides by PDEs has stream effector molecules and biological functions. To address this been available in these cells. problem, we have begun to use an unbiased mass spectrometry- Inhibitors of cAMP PDEs are useful tools to study PKA/EPAC- based approach coupled with treatment using PDE isozyme- mediated signaling, and selective inhibitors for each of the 11 PDE – selective inhibitors to characterize the phosphoproteomes of the families have been developed (19 21).
    [Show full text]
  • 1 Genome-Wide Discovery of SLE Genetic Risk Variant Allelic Enhancer
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.906701; this version posted January 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide discovery of SLE genetic risk variant allelic enhancer activity Xiaoming Lu*1, Xiaoting Chen*1, Carmy Forney1, Omer Donmez1, Daniel Miller1, Sreeja Parameswaran1, Ted Hong1,2, Yongbo Huang1, Mario Pujato3, Tareian Cazares4, Emily R. Miraldi3-5, John P. Ray6, Carl G. de Boer6, John B. Harley1,4,5,7,8, Matthew T. Weirauch#,1,3,5,8,9, Leah C. Kottyan#,1,4,5,9 *Contributed equally #Co-corresponding authors: Leah.Kottyan@cchmc.org; Matthew.Weirauch@cchmc.org 1Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 2Department of Pharmacology & Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA, 45229. 3Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 4Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 5Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA, 45229. 6Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, Massachusetts, USA, 02142. 7US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA 45229. 8Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.906701; this version posted January 20, 2020.
    [Show full text]