Invasion Genetics of American Cherry Fruit Fly in Europe and Signals of Hybridization with the European Cherry Fruit

Total Page:16

File Type:pdf, Size:1020Kb

Invasion Genetics of American Cherry Fruit Fly in Europe and Signals of Hybridization with the European Cherry Fruit DOI: 10.1111/eea.12041 Invasion genetics of American cherry fruit flyinEurope and signals of hybridization with the European cherry fruit fly Jes Johannesen1*, Nusha Keyghobadi2, Hannes Schuler3, Christian Stauffer3 & Heidrun Vogt4 1Institute of Zoology, Ecological Department, University of Mainz, Johann-Joachim-Becherweg 13, Mainz 55128, Germany, 2Department of Biology, Western University, London, Ontario, ON N6A 5B7, Canada, 3Department of Forest & Soil Sciences, Institute of Forest Entomology, Forest Pathology & Forest Protection, BOKU, University of Natural Resources & Applied Life Sciences, Hasenauerstrasse 38, Vienna 1190, Austria, and 4Julius Kuhn-Institute,€ Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Strasse 101, Dossenheim 69221, Germany Accepted: 2 January 2013 Key words: Rhagoletis cingulata, Rhagoletis indifferens, Rhagoletis cerasi, microsatellites, COI, cross- species amplification, hybridization, invasion biology, pest species, Diptera, Tephritidae, wing pattern Abstract The American cherry fruit fly is an invasive pest species in Europe, of serious concern in tart cherry production as well as for the potential to hybridize with the European cherry fruit fly, Rhagoletis cerasi L. (Diptera: Tephritidae), which might induce new pest dynamics. In the first European reports, the question arose whether only the eastern American cherry fruit fly, Rhagoletis cingulata (Loew) (Di- ptera: Tephritidae), is present, or also the closely related western American cherry fruit fly, Rhagoletis indifferens Curran. In this study, we investigate the species status of European populations by com- paring these with populations of both American species from their native ranges, the invasion dynamics in German (first report in 1993) and Hungarian (first report in 2006) populations, and we test for signals of hybridization with the European cherry fruit fly. Although mtDNA sequence gene- alogy could not separate the two American species, cross-species amplification of 14 microsatellite loci separated them with high probabilities (0.99–1.0) and provided evidence for R. cingulata in Europe. German and Hungarian R. cingulata populations differed significantly in microsatellite allele frequencies, mtDNA haplotype and wing pattern distributions, and both were genetically depauper- ate relative to North American populations. The diversity suggests independent founding events in Germany and Hungary. Within each country, R. cingulata displayed little or no structure in any trait, which agrees with rapid local range expansions. In cross-species amplifications, signals of hybridiza- tion between R. cerasi and R. cingulata were found in 2% of R. cingulata individuals and in 3% of R. cerasi. All putative hybrids had R. cerasi mtDNA indicating that the original between-species mating involved R. cerasi females and R. cingulata males. Doody et al., 2009; Luan et al., 2012), whereas indirect Introduction effects between native and invasive species can arise via the Invasive species have serious impacts on agricultural crops transmission of new pathogens (Kozubikova et al., 2009). and biodiversity worldwide (Shine, 2007; Vie et al., 2009). A third potentially serious impact of invasive species Deleterious effects may take place by direct interaction involves altering the genetic constitution of native species between species for resources, such as predation, herbiv- through hybridization and introgression. This may for ory, or competitive exclusion (Reitz & Trumble, 2002; example lead to species erosion (Elledge et al., 2008) or new disease syndromes (Brasier, 2001; Nunney et al., *Correspondence: Jes Johannesen, Institute of Zoology, Ecological 2010). Department, University of Mainz, Johann-Joachim-Becherweg 13, The eastern American cherry fruit fly, Rhagoletis cingu- Mainz 55128, Germany. E-mail: [email protected] lata (Loew) (Diptera, Tephritidae), is an invasive species © 2013 The Netherlands Entomological Society Entomologia Experimentalis et Applicata 1–12, 2013 Entomologia Experimentalis et Applicata © 2013 The Netherlands Entomological Society 1 2 Johannesen et al. in Europe that causes direct negative effects in agricultural 1997), of which the two most widespread are R. cingulata cherry production and potentially poses the threat of and Rhagoletis indifferens Curran. In the first reports from hybridizing with the native European cherry fruit fly, Europe, it was debated whether one or both of these two Rhagoletis cerasi L. Direct negative effects are caused by lar- species were present (Merz, 1991). The two species are val infestation of cherries, particularly in Prunus cerasus L. genetically closely related (Berlocher & Bush, 1982; Smith (tart cherry; Rosaceae) (Lampe et al., 2005). The infesta- & Bush, 1997) and morphologically very similar (Bush, tion of tart cherries poses a new pest syndrome because 1966). In the native range, the main identification trait of important economic varieties like ‘Schattenmorelle’ and these very similar species is the geographical distribution. ‘Gerema’ mature roughly 3–4 weeks later than the main The eastern cherry fruit fly R. cingulata occurs in eastern sweet cherry varieties, Prunus avium L., and, in doing so, and midwestern USA, Canada, and Mexico, whereas the they have avoided high infestation rates by R. cerasi, whose western cherry fruit fly R. indifferens is found in western peak flight period is mainly timed to the phenology of North America. Morphologically, R. cingulata has a yellow middle- to late-ripening sweet cherry. By contrast, the fore coxa and the anterior apical crossband on the wing is flight period of R. cingulata coincides with the above- often reduced to an isolated spot, whereas R. indifferens mentioned tart cherry varieties causing infestation rates up has posteriorly black shaded fore coxa and the anterior to 30% (Vogt, 2007; Vogt et al., 2010). Reported for the apical crossband is rarely reduced to an isolated spot first time in Europe in 1983 in Switzerland and in 1993 in (Foote et al., 1993). Although the morphological determi- Germany, R. cingulata is now established in Germany nation is most easily based on the frequency of the (Lampe et al., 2005; this study) and The Netherlands crossband’s spot-line pattern, it remains a frequency based (Smit & Dijkstra, 2008), whereas recent reports from Hun- and not a decisive trait and this has perhaps led to confu- gary (Szeoke,€ 2006) and Slovenia (OEPP/EPPO, 2007) sion in species determinations outside the core distribu- indicate new pest status in these countries. tion ranges in USA (CABI, 2012) and in the invasive range The potential threat of hybridization posed by Ameri- in Europe (Merz, 1991; van Aartsen, 2001). can cherry fruit flies is the possibility for introgression into In this study, we asked the following four questions to R. cerasi populations and the evolution of novel pest explore the species status and population dynamics of dynamics. In the Tephritidae, plants for oviposition also American cherry fruit flies in Europe. (1) Which species is/ act as mating locations (Zwolfer,€ 1974). Both the Ameri- are present in Europe? (2) How genetically structured can and the European cherry fruit fly use cherry trees as are European populations of American cherry fruit flies? mating location, and this creates the possibility for contact (3) Are there signs of multiple introductions in the Euro- and hybridization between them. In North America, inde- pean populations? (4) Are there signals of hybridisation pendent host plant shifts of two native Rhagoletis species, with the European cherry fruit fly? The second question Rhagoletis mendax Curran and Rhagoletis zephyria Snow, addresses the relative rate of dispersal in the introduced to the same introduced plant, Lonicera spec., has led to the range. We answer these questions by comparing allele fre- evolution of a hybrid Rhagoletis species (Schwarz et al., quency distributions at 14 microsatellite loci, mtDNA 2005). Although American and European cherry fruit flies haplotypes, and wing patterns of North American cherry have different peak flight and mating periods, they show fruit flies sampled in Germany and Hungary and compare considerable overlap (Lampe et al., 2005; Vogt et al., them with reference populations of R. cingulata and R. in- 2010). The phenological overlap, and with it the potential differens from eastern and western North America, respec- for increasing mating interactions between the species, can tively, and R. cerasi collected in Germany and Austria. The be extended by prolonging the sweet cherry season with European populations of American fruit fly in this study late varieties or by different management practices (Teix- represent a succession of population establishments: ‘old’ eira et al., 2007). The observation that some R. cerasi do populations in western Germany, ‘middle-aged’ popula- not diapause (Koppler,€ 2008) could also lead to a second tions in eastern Germany, and ‘young’ populations in generation in the late flight period of R. cingulata. Finally, Hungary. contact between the species may be facilitated by the wide distribution in Europe of the native host plant Prunus serotina Ehrh. (black cherry). Thus, both the possibility Materials and methods of bridging flight seasons and the introduction of a new Sampling host plant to R. cerasi (i.e., P. serotina) may facilitate Flies were collected in North America and Europe in 2009 hybridization. and 2010 in P. avium (sweet cherry) and P. cerasus (tart
Recommended publications
  • Diptera: Tephritidae)
    Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae) Authors: Doellman, Meredith M., Hood, Glen R., Gersfeld, Jacob, Driscoe, Amanda, Xu, Charles C. Y., et al. Source: Annals of the Entomological Society of America, 113(4) : 246- 256 Published By: Entomological Society of America URL: https://doi.org/10.1093/aesa/saz069 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Entomological-Society-of-America on 29 Aug 2020 Terms of Use: https://bioone.org/terms-of-useAccess provided by University of Notre Dame Annals of the Entomological Society of America, 113(4), 2020, 246–256 doi: 10.1093/aesa/saz069 Advance Access Publication Date: 16 March 2020 Special Collection: Advanced Genetic Analysis of Invasive Arthropods Special Collection Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae) 2020 July 23 user on access site OUP by https://academic.oup.com/aesa/article-abstract/113/4/246/5748322 from Downloaded Meredith M.
    [Show full text]
  • Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗
    ANRV330-EN53-24 ARI 2 November 2007 18:52 Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗ Martın´ Aluja1 and Robert L. Mangan2 1Instituto de Ecologıa,´ A.C., Xalapa, Veracruz, Mexico;´ email: [email protected] 2Kika de la Garza ARC, USDA-ARS, Weslaco, Texas; email: [email protected] Annu. Rev. Entomol. 2008. 53:473–502 Key Words First published online as a Review in Advance on host plant, oviposition behavior, host range evolution, quarantine September 17, 2007 pest, risk analysis, systems approach The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Although fruit fly host status determination/designation lies at the 10.1146/annurev.ento.53.103106.093350 heart of strategic decisions on national and international trade of Copyright c 2008 by Annual Reviews. fruit and vegetables, all attempts thus far to define host plant sta- All rights reserved by Wageningen UR on 02/01/08. For personal use only. tus have been contentious and as a result long-standing disputes 0066-4170/08/0107-0473$20.00 between commercial partners throughout the world have lingered ∗ The U.S. Government has the right to retain a over decades. Part of the problem is that too little effort has been nonexclusive, royalty-free license in and to any devoted to understanding the underlying mechanisms involved in copyright covering this paper. host plant use by fruit flies and that instead economic and political Annu. Rev. Entomol. 2008.53:473-502. Downloaded from arjournals.annualreviews.org interests usually prevail.
    [Show full text]
  • Ketu Mutant Mice Uncover an Essential Meiotic Function for the Ancient, Putative RNA Helicase YTHDC2
    bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ketu mutant mice uncover an essential meiotic function for the ancient, putative RNA helicase YTHDC2 Devanshi Jain1, M. Rhyan Puno2,4, Kathryn V. Anderson3, and Scott Keeney1,4 * 1Molecular Biology Program, 2Structural Biology Program, 3Developmental Biology Program, and 4Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA Running title: Ythdc2 is essential for mouse meiosis Keywords Meiosis, spermatogonia, MEIOC, Bgcn, Bam, RNA binding proteins, gametogenesis *Correspondence: Scott Keeney Howard Hughes Medical Institute Molecular Biology Program Memorial Sloan Kettering Cancer Center 1275 York Ave, Box 97 New York, NY 10065 (212) 639-5182 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/171827; this version posted August 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Mechanisms regulating mammalian meiotic progression are poorly understood. Here we identify mouse YTHDC2 as a critical component of this regulation. A screen yielded a mutant, “ketu”, with male and female sterility caused by a Ythdc2 missense mutation. Mutant germ cells enter meiosis but proceed prematurely to aberrant metaphase and apoptosis.
    [Show full text]
  • Area-Wide Management of Fruit Fly Pests
    Compendium of Fruit Fly 27 Host Plant Information The USDA Primary Reference in Establishing Fruit Fly Regulated Host Plants Nicanor J. Liquido*, Grant T. McQuate, Karl A. Suiter, Allen L. Norrbom, Wee L. Yee, and Chiou Ling Chang CONTENTS 27.1 Introduction ........................................................................................................................364 27.2 Methods ..............................................................................................................................364 27.3 Results and Discussion .......................................................................................................365 27.3.1 Comprehensive Fruit Fly Species-Specific Host Plant Databases and Provisional Host Lists ...........................................................................................365 27.3.2 Tephritidae Databases ...........................................................................................366 27.3.3 Host Plants of the Dacinae of the Pacific Islands ................................................. 367 27.4 Conclusion .......................................................................................................................... 367 Acknowledgments .......................................................................................................................... 367 References ......................................................................................................................................368 Abstract The inherent ecological adaptiveness
    [Show full text]
  • Rhagoletis Completa
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Rhagoletis completa IDENTITY • Rhagoletis completa Name: Rhagoletis completa Cresson Synonyms: Rhagoletis suavis subsp. completa Cresson Taxonomic position: Insecta: Diptera: Tephritidae Common names: Walnut husk fly (English) Mouche des brous du noyer (French) Notes on taxonomy and nomenclature: In the previous edition of this data sheet (EPPO/CABI, 1992), R. suavis was treated as a synonym of R. completa. In this edition, it is treated as a separate species (see below). Bayer computer code: RHAGCO EU Annex designation: I/A1 • Rhagoletis suavis Name: Rhagoletis suavis (Loew) Synonyms: Trypeta suavis Loew Bayer computer code: RHAGSU EU Annex designation: I/A1 HOSTS • Rhagoletis completa The principal hosts are Juglans spp. In North America, J. nigra, J. californica and J. hindsii are attacked (Bush, 1966). Under certain conditions peaches (Prunus persica) may be attacked (Bush, 1966) but the significance of this is not clear. Wild hosts are other Juglans spp. (Foote, 1981). In the EPPO region, the only economically significant host might be walnuts (J. regia). Although there was only one old record, possibly a misidentification, on this host in North America (Cresson, 1929), there were records of high levels of infestation of walnut fruits in 1991 in some Italian orchards. • Rhagoletis suavis Recorded from Juglans ailanthifolia, J. cinerea, J. nigra and walnuts (J. regia) (Bush, 1966). Peaches (Prunus persica) are also an occasional host (Dean, 1969). GEOGRAPHICAL DISTRIBUTION R. completa and R. suavis are indigenous to North America. The former species has very recently been introduced into the EPPO region and has become established in a limited area.
    [Show full text]
  • Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
    insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species.
    [Show full text]
  • Pest Categorisation of Liriomyza Bryoniae
    SCIENTIFIC OPINION ADOPTED: 30 January 2020 doi: 10.2903/j.efsa.2020.6038 Pest categorisation of Liriomyza bryoniae EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Ewelina Czwienczek, Franz Streissl and Alan MacLeod Abstract The EFSA Panel on Plant Health performed a pest categorisation of Liriomyza bryoniae (Diptera: Agromyzidae) for the EU. L. bryoniae (the tomato leaf miner; EPPO code: LIRIBO) is a polyphagous Palaearctic species which probably originates from southern Europe, where it occurs commonly outdoors and has now spread to many parts of central and northern Europe, where it is only found in greenhouses. The species is also reported in North Africa and in several countries in Asia. L. bryoniae can have multiple overlapping generations per year. Eggs are inserted in the leaves of host plants. Three larval instars feed internally within leaves and stems of field vegetables. Pupation generally takes place in the soil and very occasionally on the upper or lower surfaces of the leaves. L. bryoniae is regulated in the EU by Commission Implementing Regulation (EU) 2019/2072 (Annex III) in specific protected zones only (the Republic of Ireland and Northern Ireland in the United Kingdom). However, L. bryoniae is not specifically mentioned in any of the annexes of Commission Implementing Regulation 2019/2072 concerning controls regarding certain protected zones.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2016-01 General 2016/001 Results of the questionnaire on the EPPO Reporting Service 2016/002 EPPO Standards on efficacy evaluation of plant protection products: update of the web-based database 2016/003 IPPC photo contest: The Shocking Impacts of Pests 2016/004 New data on quarantine pests and pests of the EPPO Alert List Pests 2016/005 Presence of Rhagoletis completa suspected in the Netherlands 2016/006 Interception of a new and undescribed species of Josephiella on Ficus microcarpa bonsais from China 2016/007 Presence of Contarinia pseudotsugae suspected in Belgium 2016/008 Presence of Contarinia pseudotsugae suspected in the Netherlands 2016/009 Addition of Contarinia pseudotsugae to the EPPO Alert List 2016/010 First reports of Macrohomotoma gladiata in Italy and Algeria 2016/011 First report of Neophyllaphis podocarpi in Spain 2016/012 First report of Sipha flava in Spain Diseases 2016/013 First report of Tomato chlorosis virus in Jordan 2016/014 First report of Puccinia horiana in India 2016/015 First report of Quambalaria eucalypti in Portugal 2016/016 Tar spot disease of maize found for the first time in the USA Invasive plants 2016/017 First report of Solanum elaeagnifolium in Bulgaria 2016/018 Arctotheca calendula: an emerging invasive alien plant in Italy 2016/019 Manihot grahamii: a new alien plant species in Europe 2016/020 Potted plants as pathway for introducing invasive alien plants 2016/021 The influence of mowing regime on the soil seed bank of Ambrosia artemisiifolia 2016/022 Epilobium adenocaulon and Oenothera glazioviana: two new alien species for Bulgaria 2016/023 23rd International Meeting on Weed Control (Dijon, FR, 2016-12-06/08) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2016 no.
    [Show full text]
  • Diptera: Tephritidae) Pests in the NAPPO Countries
    NAPPO Science and Technology Documents ST 04: Status of Rhagoletis (Diptera: Tephritidae) Pests in the NAPPO Countries Prepared by the members of the NAPPO Technical Advisory Group on Rhagoletis Wee L. Yee1, Vicente Hernández-Ortiz2, Juan Rull3 y Bradley J. Sinclair4 October, 2013 1 United States Department of Agriculture-Agricultural Research Service, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951, [email protected] 2 Red de Interacciones Multitróficas, Instituto de Ecología A.C., Km 2.5 carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91070, Mexico, [email protected] 3 Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C., Km 2.5 carretera Antigua a Coatepec # 351, El Haya, Xalapa, Veracruz 91070, Mexico, [email protected] 4 Canadian National Collection of Insects & Ottawa Plant Laboratory – Entomology, CFIA K. W. Neatby Building, 960 Carling Ave., Ottawa, ON Canada K1A 0C6, [email protected] 1 Table of Contents Introduction ...........................................................................................................................3 Apple Maggot, Rhagoletis pomonella (Walsh) ......................................................................4 Blueberry Maggot, Rhagoletis mendax Curran .....................................................................8 Eastern Cherry Fruit Fly, Rhagoletis cingulata (Loew) ........................................................ 11 Western Cherry Fruit Fly, Rhagoletis indifferens
    [Show full text]
  • A Study on the Biological and Physiological Traits of Bactrocera Dorsalis, with Special Reference to Its Invasion Potential Into the Western Cape of South Africa
    A study on the biological and physiological traits of Bactrocera dorsalis, with special reference to its invasion potential into the Western Cape of South Africa. by Welma Pieterse Dissertation presented for the degree of Doctor of Philosophy (Agricultural Sciences) at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr Pia Addison Co-supervisors: Prof John Terblanche Dr Aruna Manrakhan March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated) that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Welma Pieterse Date: 26 February 2018 Copyright © 2018 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Bactrocera dorsalis (Hendel) is of Asian origin and is present in the northern and north-eastern parts of South Africa, but is still absent in other areas of the country including the Western Cape Province. The Western Cape Province is the largest producer of deciduous fruit in South Africa, exporting 41% of the deciduous fruit grown in the province. South Africa earned about R7 billion in export revenue from deciduous fruit exports in 2015. Currently, Ceratitis capitata (Wiedemann) and Ceratitis rosa s.l. Karsch are economically the most important fruit fly species on deciduous fruit in the Western Cape Province of South Africa.
    [Show full text]
  • First Record of an Invasive Fruit Fly Belonging to Bactrocera Dorsalis Complex (Diptera: Tephritidae) in Europe
    insects Article First Record of an Invasive Fruit Fly Belonging to Bactrocera dorsalis Complex (Diptera: Tephritidae) in Europe Francesco Nugnes 1 , Elia Russo 1, Gennaro Viggiani 2 and Umberto Bernardo 1,* 1 CNR, Institute for Sustainable Plant Protection, 80055 Portici, Italy; [email protected] (F.N.); [email protected] (E.R.) 2 Department of Agriculture, University of Naples “Federico II”, 80055 Portici, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0817-7536-5813 Received: 29 October 2018; Accepted: 29 November 2018; Published: 3 December 2018 Abstract: Emerging pests are increasingly threatening fruit orchard health across the Mediterranean area. Tephritidae, representing serious threats for Europe, are numerous, and the fruit flies Bactrocera zonata and those belonging to Bactrocera dorsalis complex are among the most alarming species. These species are highly polyphagous and B. zonata has already spread to some Mediterranean countries. Due to these ongoing threats, in the Campania Region (southern Italy), a survey with traps and infested fruits analysis was performed with the aim of detecting the presence of species of Bactrocera dorsalis complex. In two mixed fruit-trees fields, some adults belonging to a species of Bactrocera were captured in traps baited with the highly attractive male lure (methyl eugenol). They were distinguished from similar-looking Bactrocera spp. by morphological and molecular comparative analyses. Considering the existing morphological keys, specimens were tentatively identified as B. dorsalis but molecular characterization with COI split them into two clades. Some specimens were grouped with B. dorsalis similar to B. kandiensis and B. kandiensis and others in a clade including B.
    [Show full text]
  • FOR EUROPE, with FOCUS on R. BATAVA and ITS RECENT RANGE EXPANSION Arturs Stalaþs1,# and Maksims Balalaikins1,2
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 71 (2017), No. 3 (708), pp. 103–110. DOI: 10.1515/prolas-2017-0018 Review COUNTRY CHECKLIST OF RHAGOLETIS LOEW (DIPTERA: TEPHRITIDAE) FOR EUROPE, WITH FOCUS ON R. BATAVA AND ITS RECENT RANGE EXPANSION Arturs Stalaþs1,# and Maksims Balalaikins1,2 1 Institute of Horticulture, Latvia University of Agriculture, Graudu iela 1, Ceriòi, Krimûnu pagasts, Dobeles novads, LV-3701, LATVIA 2 Institute of Life Sciences and Technologies, Daugavpils University, Parâdes iela 1A, Daugavpils, LV-5401, LATVIA; [email protected] # Corresponding author, [email protected] Communicated by Viesturs Melecis This work is intended as a country checklist of fruit flies Rhagoletis Loew, 1862 for Europe (in- cluding transcontinental countries — Kazakhstan and Turkey), based on recent records, wherein we recognise 15 Rhagoletis species, including five species occurring in the Asian part of Ka- zakhstan. During the past 10–15 years, three species, Rhagoletis batava Hering, 1958, R. cingu- lata (Loew, 1862), and R. completa Cresson, 1929, have rapidly expanded their distribution range in Europe. We traced the potential route of an aggressive R. batava population movement into Europe, and it is postulated that this R. batava race originated from Siberia. R. batava was initially documented outside its natural range in 2001 in the European part of the Russian Federation. Later, this species was recorded in other territories to the west of Russia — Belarus (2010), Lat- via (2011), Lithuania (2012), Germany (2013), and Poland (2014). In Germany and Poland, R. batava probably has both native and alien status. Key words: alien species, fruit flies, population expansion, sea buckthorn pest.
    [Show full text]