CCL3L1 and CCL4L1: Variable Gene Copy Number in Adolescents with and Without Human Immunodeficiency Virus Type 1 (HIV-1) Infection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Michael Antoni
Stress Management Effects on Biological and Molecular Pathways in Women Treated for Breast Cancer APS/NCI Conference on “Toward Precision Cancer Care: Biobehavioral Contributions to the Exposome” Chicago IL Michael H. Antoni, Ph.D. Department of Psychology Div of Health Psychology Director, Center for Psycho- Oncology Director, Cancer Prevention and Control Research, Sylvester Cancer Center University of Miami E.g., Stress Management for Women with Breast Cancer • Rationale – Breast Cancer (BCa) is a stressor – Challenges of surgery and adjuvant tx – Patient assets can facilitate adjustment – Cognitive Behavioral Stress Management (CBSM) can fortify these assets in women with BCa – Improving Psychosocial Adaptation may Affect Physiological Adaptation Theoretical Model for CBSM during CA Tx Negative Adapt Positive Adapt Physical Funct Awareness C ∆ Cog Appraisals B Physical Emot Processing + Health Beh. S Health M Relaxation QOL Social Support Normalize endocrine and immune regulation Antoni (2003). Stress Management for Women with Breast Cancer. American Psychological Association. Assessment Time Points T1 T2 T3 T4 B SMART-10 wks. 2-8 wks post 3 months post 6 months post surgery One year post surgery Topics of CBSM Week Relaxation Stress Management 1 PMR 7 Stress & Awareness 2 PMR 4/D.B. Stress & Awareness/Stress Appraisals 3 D.B./PMR Disease-Specific, Automatic Thoughts 4 Autogenics Auto. Thghts, Distortions, Thght Rep. 5 D.B./Visualiz. Cognitive Restructuring 6 Sunlight Med. Effective Coping I 7 Color Meditation Effective Coping -
Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates. -
Acting on the CCR1 Receptor Mediates Neutrophil Migration in Immune Inflammation Via Sequential ␣ Release of TNF- and LTB4 Cleber D
MIP-1␣[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential ␣ release of TNF- and LTB4 Cleber D. L. Ramos,* Claudio Canetti,*,† Janeusa T. Souto,‡,§ Joa˜ o S. Silva,‡ Cory M. Hogaboam,¶ Sergio H. Ferreira,* and Fernando Q. Cunha*,1 Departments of *Pharmacology and ‡Biochemistry and Immunology, School of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Brazil; §Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; and †Division of Pulmonary & Critical Care Medicine and ¶Department of Pathology, University of Michigan, Ann Arbor Abstract: In the present study, we investigated nists might have a therapeutic potential. J. Leukoc. the involvement of macrophage-inflammatory pro- Biol. 78: 167–177; 2005. tein-1␣ (MIP-1␣)[CC chemokine ligand 3 (CCL3)], MIP-1[CCL4], regulated on activation, normal Key Words: chemokines ⅐ chemokine receptors ⅐ chemotaxis T expressed and secreted (RANTES)[CCL5], and CC chemokine receptors (CCRs) on neutrophil mi- gration in murine immune inflammation. Previ- INTRODUCTION ously, we showed that ovalbumin (OVA)-triggered neutrophil migration in immunized mice depends on the sequential release of tumor necrosis factor Neutrophil migration is a complex process, which results ␣ ␣ mainly from the release of neutrophil chemotactic factors by (TNF- ) and leukotriene B4 (LTB4). Herein, we show increased mRNA expression for MIP- resident cells, inducing rolling and adhesion of neutrophils on 1␣[CCL3], MIP-1[CCL4], RANTES[CCL5], and endothelial cells, followed by their transmigration to the ex- travascular space [1, 2]. Apart from its importance in host CCR1 in peritoneal cells harvested from OVA-chal- defense, the migration of neutrophils to the inflammatory site lenged, immunized mice, as well as MIP-1␣[CCL3] is, at least in part, responsible for tissue damage observed in and RANTES[CCL5] but not MIP-1[CCL4] proteins several inflammatory diseases such as rheumatoid arthritis, in the peritoneal exudates. -
Interactions Between the Parasite Philasterides Dicentrarchi and the Immune System of the Turbot Scophthalmus Maximus.A Transcriptomic Analysis
biology Article Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus.A Transcriptomic Analysis Alejandra Valle 1 , José Manuel Leiro 2 , Patricia Pereiro 3 , Antonio Figueras 3 , Beatriz Novoa 3, Ron P. H. Dirks 4 and Jesús Lamas 1,* 1 Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 2 Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 3 Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; [email protected] (P.P.); antoniofi[email protected] (A.F.); [email protected] (B.N.) 4 Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +34-88-181-6951; Fax: +34-88-159-6904 Received: 4 September 2020; Accepted: 14 October 2020; Published: 15 October 2020 Simple Summary: Philasterides dicentrarchi is a free-living ciliate that causes high mortality in marine cultured fish, particularly flatfish, and in fish kept in aquaria. At present, there is still no clear picture of what makes this ciliate a fish pathogen and what makes fish resistant to this ciliate. In the present study, we used transcriptomic techniques to evaluate the interactions between P. dicentrarchi and turbot leucocytes during the early stages of infection. The findings enabled us to identify some parasite genes/proteins that may be involved in virulence and host resistance, some of which may be good candidates for inclusion in fish vaccines. -
Bioinformatics Identification of CCL8/21 As Potential Prognostic
Bioscience Reports (2020) 40 BSR20202042 https://doi.org/10.1042/BSR20202042 Research Article Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment 1,* 2,* 3 4 5 1 Bowen Chen , Shuyuan Zhang ,QiuyuLi, Shiting Wu ,HanHe and Jinbo Huang Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20202042/897847/bsr-2020-2042.pdf by guest on 28 September 2021 1Department of Breast Disease, Maoming People’s Hospital, Maoming 525000, China; 2Department of Clinical Laboratory, Maoming People’s Hospital, Maoming 525000, China; 3Department of Emergency, Maoming People’s Hospital, Maoming 525000, China; 4Department of Oncology, Maoming People’s Hospital, Maoming 525000, China; 5Department of Medical Imaging, Maoming People’s Hospital, Maoming 525000, China Correspondence: Shuyuan Zhang ([email protected]) Background: Breast cancer (BC) is the most common malignancy among females world- wide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host toreject the tumor. CC chemokines play a significant role in inflammation and infection. Methods: In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. Results: The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remark- ably increased while CCL14/21/23/28 was significantly down-regulated in BC tis- sues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC. -
Association of Chemokine CCL5 and Systemic Malignancies
J Hum Genet (2008) 53:377–378 DOI 10.1007/s10038-008-0270-6 LETTER TO THE EDITOR Association of chemokine CCL5 and systemic malignancies Shailendra Kapoor Received: 28 January 2008 / Accepted: 8 February 2008 / Published online: 27 March 2008 Ó The Japan Society of Human Genetics and Springer 2008 To the Editor CCL5 levels are also increased in a wide spectrum of The article by Konta et al. (2008) on the relationship other diseases, such as idiopathic inflammatory myopathies between CC chemokine ligand 5 (CCL5) genotype and (Civatte et al. 2005) and chronic gastritis (Ohtani et al. urinary albumin excretion in the nondiabetic Japanese 2004). The recent study by Konta et al. further adds to general population is highly interesting. The study by diseases in which CCL5 plays a major pathogenetic role. Konta et al. adds to the growing array of pathological Further studies are needed to identify potent and safe conditions in which CCL5 plays a major role. Interestingly, inhibitors of CCL5 for better management of these diseases CCL5 has recently been implicated in the etiopathogenesis ranging from breast cancer to nondiabetic albuminuria. of a number of systemic malignancies. For instance, Luboshits et al. (1999), in a recent study, have shown that advanced breast cancers are associated References with increased expression of CCL5. CCL5 has also been shown to be a significant predictor of progression in Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A, Colombatti A (2008) Expression of CCR5 receptors patients with stage II breast cancer (Hahoshen et al. 2006). on Reed-Sternberg cells and Hodgkin lymphoma cell lines: In another study, tumors that expressed higher levels of involvement of CCL5/Rantes in tumor cell growth and micro- CCL5 were more likely to metastasize in comparison with environmental interactions. -
Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus. -
Human CCL3L1 Copy Number Variation, Gene Expression, and The
bioRxiv preprint doi: https://doi.org/10.1101/249508; this version posted January 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is Pagemade available 1 of 19 under aCC-BY 4.0 International license. 1 Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis 2 in lung function 3 4 Adeolu B Adewoye (1)*, Nick Shrine (2)*, Linda Odenthal-Hesse (1), Samantha Welsh (3), 5 Anders Malarstig (4), Scott Jelinsky (5), Iain Kilty (5), Martin D Tobin (2,6), Edward J Hollox (1)†, 6 Louise V Wain (2,6)† 7 8 1. Department of Genetics and Genome Biology, University of Leicester, Leicester, UK 9 2. Department of Health Sciences, University of Leicester, Leicester, UK 10 3. UK Biobank, Stockport, UK 11 4. Pfizer Worldwide Research and Development, Stockholm, Sweden. 12 5. Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA 13 6. National Institute of Health Research Biomedical Research Centre, University of 14 Leicester, Leicester, UK 15 16 * † These authors contributed equally to this work. 17 18 Corresponding authors: Edward J Hollox ([email protected]), Louise V Wain 19 ([email protected]) 20 21 Keywords: copy number variation, lung function, CCL3L1, CCR5, CNV, UK Biobank 22 23 Abstract 24 25 The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including 26 macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 27 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic 28 monoclonal antibodies are in development. -
Supplementary Figures and Tables
SUPPLEMENTARY DATA Supplementary Figure 1. Isolation and culture of endothelial cells from surgical specimens of FVM. (A) Representative pre-surgical fundus photograph of a right eye exhibiting a FVM encroaching on the optic nerve (dashed line) causing tractional retinal detachment with blot hemorrhages throughout retina (arrow heads). (B) Magnetic beads (arrows) allow for separation and culturing of enriched cell populations from surgical specimens (scale bar = 100 μm). (C) Cultures of isolated cells stained positively for CD31 representing a successfully isolated enriched population (scale bar = 40 μm). ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Figure 2. Efficient siRNA knockdown of RUNX1 expression and function demonstrated by qRT-PCR, Western Blot, and scratch assay. (A) RUNX1 siRNA induced a 60% reduction of RUNX1 expression measured by qRT-PCR 48 hrs post-transfection whereas expression of RUNX2 and RUNX3, the two other mammalian RUNX orthologues, showed no significant changes, indicating specificity of our siRNA. Functional inhibition of Runx1 signaling was demonstrated by a 330% increase in insulin-like growth factor binding protein-3 (IGFBP3) RNA expression level, a known target of RUNX1 inhibition. Western blot demonstrated similar reduction in protein levels. (B) siRNA- 2’s effect on RUNX1 was validated by qRT-PCR and western blot, demonstrating a similar reduction in both RNA and protein. Scratch assay demonstrates functional inhibition of RUNX1 by siRNA-2. ns: not significant, * p < 0.05, *** p < 0.001 ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Table 1. -
Downloaded From
Multiple Products Derived from Two CCL4 Loci: High Incidence of a New Polymorphism in HIV + Patients This information is current as Roger Colobran, Patricia Adreani, Yaqoub Ashhab, Anuska of October 2, 2021. Llano, José A. Esté, Orlando Dominguez, Ricardo Pujol-Borrell and Manel Juan J Immunol 2005; 174:5655-5664; ; doi: 10.4049/jimmunol.174.9.5655 http://www.jimmunol.org/content/174/9/5655 Downloaded from References This article cites 56 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/174/9/5655.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Multiple Products Derived from Two CCL4 Loci: High Incidence of a New Polymorphism in HIV؉ Patients1 Roger Colobran,*‡ Patricia Adreani,* Yaqoub Ashhab,* Anuska Llano,† Jose´A. Este´,† Orlando Dominguez,* Ricardo Pujol-Borrell,*‡ and Manel Juan2*‡ Human CCL4/macrophage inflammatory protein (MIP)-1 and CCL3/MIP-1␣ are two highly related molecules that belong to a cluster of inflammatory CC chemokines located in chromosome 17. -
Platelet-Derived Growth Factor Isoform Expression in Carbon Tetrachloride
Laboratory Investigation (2008) 88, 1090–1100 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury Erawan Borkham-Kamphorst1, Evgenia Kovalenko1, Claudia RC van Roeyen2, Nikolaus Gassler3, Michael Bomble1, Tammo Ostendorf 2,Ju¨rgen Floege2, Axel M Gressner1 and Ralf Weiskirchen1 Platelet-derived growth factor (PDGF) has an essential role in liver fibrogenesis, as PDGF-B and -D both act as potent mitogens on culture-activated hepatic stellate cells (HSCs). Induction of PDGF receptor type-b (PDGFRb) in HSC is well documented in single-dose carbon tetrachloride (CCl4)-induced acute liver injury. Of the newly discovered isoforms PDGF- C and -D, only PDGF-D shows significant upregulation in bile duct ligation (BDL) models. We have now investigated the expression of PDGF isoforms and receptors in chronic liver injury in vivo after long-term CCl4 treatment and demonstrated that isolated hepatocytes have the requisite PDGF signaling pathways, both in the naive state and when isolated from CCl4-treated rats. In vivo, PDGF gene expression showed upregulation of all PDGF isoforms and receptors, with values peaking at 4 weeks and decreasing to near basal levels by 8 and 12 weeks. Interestingly, PDGF-C increased significantly when compared to BDL-models. PDGF-A, PDGF-C and PDGF receptor type-a (PDGFRa) correlated closely with in- flammation and steatosis. Immunohistochemistry revealed expression of PDGF-B, -C and -D in areas corresponding to centrilobular necrosis, inflammation and fibrosis, whereas PDGF-A localized in regenerative hepatocytes. PDGFRb was identified along the fibrotic septa, whereas PDGFRa showed positive staining in fibrotic septa and regenerative hepa- tocytes. -
Comparative Transcriptomics Reveals Similarities and Differences
Seifert et al. BMC Cancer (2015) 15:952 DOI 10.1186/s12885-015-1939-9 RESEARCH ARTICLE Open Access Comparative transcriptomics reveals similarities and differences between astrocytoma grades Michael Seifert1,2,5*, Martin Garbe1, Betty Friedrich1,3, Michel Mittelbronn4 and Barbara Klink5,6,7 Abstract Background: Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. Methods: We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Results: Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth.