Overcoming the Intestinal Barrier a Look Into Targeting Approaches for Improved Oral Drug Delivery Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thymic Peptides and Preparations: an Update
¡ Archivum Immunologiae et Therapiae Experimentalis, 1999, 47¢ , 77–82 £ PL ISSN 0004-069X Review Thymic Peptides and Preparations: an Update ¤ O. J. Cordero et al.: Thymic Peptides ¦ ¨ § OSCAR J. CORDERO, A¥ LICIA PIÑEIRO and MONTSERRAT NOGUEIRA Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain Abstract. The possibilities of thymic peptides in human therapy are still being described. Here, we focus on their © general characteristics and on recent advances in this area. Key words: thymus; thymic peptides; preclinical investigation; therapeutic use; clinical trials. Thymic peptides, as well as a variety of other purified from porcine and human serum and from calf modulators (IL-1, IL-3, IL-6, GM-CSF) and cell-cell thymus, and named “facteur thymique serique”11. interactions, regulate the process known as thymic se- According to the classical criteria, TH is the unique lection by which pro-thymocytes become mature and peptide that can be recognized as a hormone. Its secre- functional T cells. tion by a subpopulation of thymic epithelial cells (TEC) Several polypeptides have been extracted, mainly is controlled by a pleiotropic mechanism involving its from young calves, and some of them have been suc- own levels and those of prolactine (PRL), growth hor- cessfully isolated and prepared synthetically (Fig. 1). mone (GH) through insulin growth factor 1 (IGF-1) se- The precise role of much of these factors purported to cretion, adrenocorticotropin (ACTH), thyroxin (T4), β- have intrathymic effects is still unknown, although endorphin and β-leukencephalin and IL-1α and β8. many of these compounds exhibit immunobiological Furthermore, reciprocal regulatory actions on the activity. -
Atoh8 Is a Regulator of Intestinal Microfold Cell (M Cell) Differentiation Joel Johnson George1, Laura Martin-Diaz1, Markus Ojanen1, Keijo Viiri1
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443378; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Atoh8 is a regulator of intestinal microfold cell (M cell) differentiation Joel Johnson George1, Laura Martin-Diaz1, Markus Ojanen1, Keijo Viiri1 1Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University Tampere, Finland. Grant Support: This work was supported by the Academy of Finland (no. 310011), Tekes (Business Finland) (no. 658/31/2015), Pediatric Research Foundation, Sigrid Jusélius Foundation, Mary och Georg C. Ehrnrooths Stiftelse, Laboratoriolääketieteen Edistämissäätiö sr. The funding sources played no role in the design or execution of this study or in the analysis and interpretation of the data. Abstract Intestinal microfold cells (M cells) are a dynamic lineage of epithelial cells that initiate mucosal immunity in the intestine. They are responsible for the uptake and transcytosis of microorganisms, pathogens and other antigens in the gastrointestinal tract. A mature M cell expresses a receptor Gp2 which binds to pathogens and aids in the uptake. Due to the rarity of these cells in the intestine, its development and differentiation remains yet to be fully understood. We recently demonstrated that polycomb repressive complex 2 (PRC2) is an epigenetic regulator of M cell development and 12 novel transcription factors including Atoh8 were revealed to be regulated by the PRC2. Here, we show that Atoh8 acts as a regulator of M cell differentiation; absence of Atoh8 led to a significant increase in the number of Gp2+ mature M cells and other M cell associated markers. -
Thymopentin and Splenopentin As Immunomodulators Current Stutus
Immunologic Research 1998;17/3:345-368 Thymopentin and Splenopentin as Immunomodulators Current Stutus 1Department of Immunology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India. 2Division of Biopolymers, Central Drug Research Institute, Lucknow, India. 3Department of Microbiology, RML Awadh University, Faizabad, India. Abstract Key Words Splenopentin (SP-5, Arg-Lys-Glu-Val-Tyr) and thymopentin (TP-5, Immunomodulation Arg-Lys-Asp-Val-Tyr) are synthetic immunomodulating peptides Splenin corresponding to the region 32-34 of a splenic product called splenin Splenopentin (SP) and the thymic hormone thymopoietin (TP), respectively. TP Thymopoietin was originally isolated as a 5-kDa (49-amino acids) protein from Thymopentin bovine thymus while studying effects of the thymic extracts on neuro- muscular transmission and was subsequently observed to affect T cell differentiation and function. TP I and II are two closely related polypeptides isolated from bovine thymus. A radioimmunoassay for TP revealed a crossreaction with a product found in spleen and lymph node. This product, named splenin, differs from TP only in position 34, aspartic acid for bovine TP and glutamic acid for bovine splenin and it was called TP III as well. Synthetic pentapeptides (TP-5) and (SP-5), reproduce the biological activities of TP and SP, respectively. It is now evident that various forms of TPs were created by proteolytic cleavage of larger proteins during isolation, cDNA clones have been isolated for three alternatively spliced mRNAs that encodes three distinct human T cell TPs. The immunomodulatory properties of TP, SP, TP-5, SP-5 and some of their synthetic analogs reported in the literature have been briefly reviewed. -
Screening of Surface Markers on Rat Intestinal Mucosa Microfold Cells by Using Laser Capture Microdissection Combined with Protein Chip Technology
Int J Clin Exp Med 2014;7(4):932-939 www.ijcem.com /ISSN:1940-5901/IJCEM1401061 Original Article Screening of surface markers on rat intestinal mucosa microfold cells by using laser capture microdissection combined with protein chip technology Junyong Zhao*, Xiaoyu Li*, Qifeng Luo, Lei Xu, Lei Chen, Li Chai, Yixiang Huang, Lin Fang Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072, China. *Equal contributors. Received January 21, 2014; Accepted April 10, 2014; Epub April 15, 2014; Published April 30, 2014 Abstract: Objective: The objective of this research was to investigate the possibility of screening surface markers on rat intestinal mucosa microfold cells (M cells) by using laser capture microdissection (LCM) combined with protein chip technology. Methods: We labeled rat intestinal mucosa microfold cells with Ulex europaeus agglutinin (UEA)-1 antibody and visualized these by immunofluorescence staining. Using the Proteome Profiler rat protein chip, we analyzed the protein expression profiles of LCM M-cells compared to lymph follicle-associated epithelial (FAE) cells, and we identified potential differences to screen for marker proteins. Results: M cells can be clearly distinguished from lymphoid FAE cells under the fluorescence microscope. We successfully cut, isolated, and obtained microfold and lymph FAE cells with more than 95% homogeneity. Six differentially expressed proteins were identified through comparison of the protein chip profiles of these 2 cell types. Among these, VEGF, LIX, CNTF, and IL-1α/IL-1F1 were found to be at significantly lower levels in M cells, IL-1ra/IL-1F3 and MIG/CXCL9 appeared in significantly higher levels in M cells (P < 0.05). -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Pulmonary Delivery of Biological Drugs
pharmaceutics Review Pulmonary Delivery of Biological Drugs Wanling Liang 1,*, Harry W. Pan 1 , Driton Vllasaliu 2 and Jenny K. W. Lam 1 1 Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; [email protected] (H.W.P.); [email protected] (J.K.W.L.) 2 School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK; [email protected] * Correspondence: [email protected]; Tel.: +852-3917-9024 Received: 15 September 2020; Accepted: 20 October 2020; Published: 26 October 2020 Abstract: In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Thymopentin Ameliorates Dextran Sulfate Sodium-Induced Colitis by Triggering
1 Thymopentin ameliorates dextran sulfate sodium-induced colitis by triggering 2 the production of IL-22 in both innate and adaptive lymphocytes 3 Qiuhua Cao1, 2*, Xinghua Gao1, 2*, Yanting Lin1, 2, Chongxiu Yue1, 2, Yue Wang1, 2, Fei 4 Quan1, 2, Zixuan Zhang1, 2, Xiaoxuan Liu1, 2, Yuan Lu1, 2, Yanling Zhan1, 2, Hongbao 5 Yang1, 2, Xianjing Li1, 2, Di Qin5, Lutz Birnbaumer4, Kun Hao3 & Yong Yang1, 2 6 7 1. State Key Laboratory of Natural Medicines, China Pharmaceutical University, 8 Nanjing, Jiangsu 211198, PR China 9 2. Center for New Drug Safety Evaluation and Research, China Pharmaceutical 10 University, Nanjing, Jiangsu 211198, PR China 11 3. Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical 12 University, Nanjing, Jiangsu 210009, PR China 13 4. Neurobiology Laboratory, National Institute of Environmental Health Sciences, 14 Research Triangle Park, North Carolina 27709, USA, and Institute of Biomedical 15 Research (BIOMED), Catholic University of Argentina, Buenos Aires C1107AFF, 16 Argentina 17 5. School of Sports and Health, Nanjing sport institute, Nanjing, Jiangsu 210001, PR 18 China 19 *These authors contributed equally to this work. 20 Corresponding author: Yong Yang and Kun Hao, China Pharmaceutical University, 21 Nanjing, China. Phone and Fax: 86-025-86185622. E-mail: [email protected] or 22 [email protected]. 1 23 Abstract 24 Background: Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease, 25 notoriously challenging to treat. Previous studies have found a positive correlation 26 between thymic atrophy and colitis severity. It was, therefore, worthwhile to investigate 27 the effect of thymopentin (TP5), a synthetic pentapeptide corresponding to the active 28 domain of the thymopoietin, on colitis. -
Aspects of the Usage of Antineoplastic and 1Mmunomodulating Agents in a Section of the Private Health Care Sector
ASPECTS OF THE USAGE OF ANTINEOPLASTIC AND 1MMUNOMODULATING AGENTS IN A SECTION OF THE PRIVATE HEALTH CARE SECTOR Wilmarie Rheeders B. Pharm Dissertation submitted in Pharmacy Practice, School of Pharmacy at the Faculty of Health Sciences of the North-West University, Potchefstroom, in partial fulfilment of the requirements for the degree Magister Pharmaciae. Supervisor: Prof M.S. Lubbe Co-supervisor: Dr. J.L. Duminy Co-supervisor: Prof. M.P. Stander Potchefstroom November 2008 For all things are from Him, by Him, and for Him. Glory belongs to Him forever! Amen. (Rom. 11:36) ACKNOWLEDGEMENTS To my Lord and Father whom I love, all the Glory! He gave me the strength, insight and endurance to finish this study. 1 also want to express my sincere appreciation to the following people that have contributed to this dissertation: • To Professor M.S. Lubbe, in her capacity as supervisor of this dissertation, my appreciation for her expert supervision, advice and time she invested in this study. • To Dr. J.L Duminy, oncologist and co-supervisor, for all the useful advice, assistance and time he put aside in the interest of this dissertation. • To Professor M.P. Stander, in his capacity as co-supervisor of this study. • To Professor J.H.P. Serfontein, for his guidance, time, effort and advice. • To the Department of Pharmacy Practice as well as the NRF for the technical and financial support. • To Anne-Marie, thank you for your patience, time and continuous effort you put into the data. • To the Pharmacy Benefit Management company for providing the data for this dissertation. -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9 -
And Oropharynx-Associated Lymphoid Tissue of Sheep T ⁎ Vijay Kumar Saxenaa,B, Alejandra Diaza,C, Jean-Pierre Y
Veterinary Immunology and Immunopathology 208 (2019) 1–5 Contents lists available at ScienceDirect Veterinary Immunology and Immunopathology journal homepage: www.elsevier.com/locate/vetimm Identification and characterization of an M cell marker in nasopharynx- and oropharynx-associated lymphoid tissue of sheep T ⁎ Vijay Kumar Saxenaa,b, Alejandra Diaza,c, Jean-Pierre Y. Scheerlincka, a Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, 3010, Australia b Division of Animal Physiology and Biochemistry, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Tonk, Rajasthan, 304501, India c Laboratorio de Inmunología, Departamento SAMP, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Pcia. de Bs. As., Tandil, 7000, Buenos Aires, Argentina ARTICLE INFO ABSTRACT Keywords: M cells play a pivotal role in the induction of immune responses within the mucosa-associated lymphoid tissues. Sheep M cells exist principally in the follicle-associated epithelium (FAE) of the isolated solitary lymphoid follicles as M cells well as in the lymphoid follicles of nasopharynx-associated lymphoid tissue and gut associated lymphoid tissue NALT (GALT). Through lymphatic cannulation it is possible to investigate local immune responses induced following Mucosal immunity nasal Ag delivery in sheep. Hence, identifying sheep M cell markers would allow the targeting of M cells to offset Biomarker the problem of trans-epithelial Ag delivery associated with inducing mucosal immunity. Sheep cDNA from the GP2 tonsils of the oropharynx and nasopharynx was PCR amplified using Glycoprotein-2 (GP2)-specific primers and expressed as a poly-His-tagged recombinant sheep GP2 (56 kDa) in HEK293 cells. -
Materials for Oral Delivery of Proteins and Peptides
REVIEWS Materials for oral delivery of proteins and peptides Tyler D. Brown 1,2, Kathryn A. Whitehead 3,4 and Samir Mitragotri 1,2* Abstract | Throughout history , oral administration has been regarded as the most convenient mode of drug delivery , as it requires minimal expertise and invasiveness. Although oral delivery works well for small-molecule drugs, oral delivery of macromolecules (particularly proteins and peptides) has been limited by acidic conditions in the stomach and low permeability across the intestinal epithelium. Accordingly , the large numbers of biologic drugs that have become available in the past 10 years typically require administration by injection or infusion. As such, a renewed emphasis has been placed on the development of novel materials that overcome the physiological challenges of oral delivery for macromolecular agents. This Review provides an overview of physiological barriers to the oral delivery of biologics and highlights the advances made in materials across various length scales, from small molecules to macroscopic devices. This Review also describes the current status of materials for oral delivery of protein and peptide drugs. The past decade has seen an increase in the number route13. Unfortunately, barring some very small pep of new drugs approved by the US Food and Drug Admin tides such as ciclosporin, oral delivery is not a currently istration (FDA), leading to an all time record number available option for protein and antibody drugs14. These of 59 novel drug approvals in 2018. Drugs for oral use macro molecular agents have prohibitively low oral bio continue to dominate the therapeutic landscape, encom availability due to several features of the gastrointestinal passing over 50% of these approvals1.